话本小说网 > 现代小说 > 理学派
本书标签: 现代 

线性映射

理学派

线性映射( linear mapping)是从一个向量空间V到另一个向量空间W的映射且保持加法运算和数量乘法运算,而线性变换(linear transformation)是线性空间V到其自身的线性映射。[1]

中文名

线性变换

外文名

linear mapping

别名

线性映射

定义

线性空间V到W的保线性的映射

应用学科

数学

定义

(1)线性变换是线性空间V到自身的映射通常称为V上的一个变换。

同时具有以下定义:

线性变换参考图

线性空间V上的一个变换A称为线性变换,对于V中任意的元素α,β和数域P中任意k,都有

A(α+β)=A(α)+A(β)

A (kα)=kA(α)

(2)线性变换是线性代数研究的一个对象,即向量空间到自身的保运算的映射。例如,对任意线性空间V,位似是V上的线性变换,平移则不是V上的线性变换。对线性变换的讨论可借助矩阵实现。σ关于不同基的矩阵是相似的。Kerσ={a∈V|σ(a)=θ}(式中θ指零向量)称为σ的核,Imσ={σ(a)|a∈V}称为σ的象,是刻画σ的两个重要概念。[1]

对于欧几里得空间,若σ关于标准正交基的矩阵是正交(对称)矩阵,则称σ为正交(对称)变换。正交变换具有保内积、保长、保角等性质,对称变换具有性质:〈σ(a),β〉=〈a,σ(β)〉。

(3)在数学中,线性映射(也叫做线性变换或线性算子)是在两个向量空间之间的函数,它保持向量加法和标量乘法的运算。术语“线性变换”特别常用,尤其是对从向量空间到自身的线性映射(自同态)。

(4)在抽象代数中,线性映射是向量空间的同态,或在给定的域上的向量空间所构成的范畴中的态射。

性质

(1)设A是V的线性变换,则A(0)=0,A(-α)=-A(α);[2]

(2)线性变换保持线性组合与线性关系式不变;

(3)线性变换把线性相关的向量组变成线性相关的向量组。

注意:线性变换可能把线性无关的向量组变成线性相关的向量组。

运算

线性变换的加法和数量乘法[1]

定义一: 设

,对A 与B和A+B定义为:

定义二:设

,对k与A的数量乘积kA定义为:

定义三:设

,对A 与B的乘积AB定义为:

定义四:设

,若存在

,使得

,则称A是可逆的,且B是A的逆变换,记为:

理解

关于线性变换和特征值的理解[3]

首先我们来看这样一个事实。一个二维的直角坐标系XOY,然后逆时针方向旋转了ө角变为X’OY’后,考察会发现XOY和 X’OY’的坐标系之间存在这样的转化关系。就是说在XOY坐标系下的某一个点在X’OY’坐标系下的坐标变了 。那么我们同样来考察一下这两个坐标系下的基坐标。就是来考察在XOY坐标系下的基坐标 (1,0)和(0,1)在新的坐标系X’OY’下的 基坐标下的投影大小用(1,0)和(0,1)来表示为这样的。注意,这里的矩阵的排列是前面两个基坐标系数方程的转置矩阵,之所以写为转置矩阵是因为我们习惯这样来写基坐标的线性变换A =( , ) 。我们可以看到这样的旋转变换的目的就是把坐标系旋转后来看一下。这样的旋转角度一旦确定以后,我们就能够得到原来的老坐标下的坐标点在新坐标系下的坐标为 。注意的是,这里的坐标是右乘变换矩阵。

线性变换参考图

线性变换数学定义在一般的高等代数学书中都可以找到。A(a+b)=Aa+Ab,Aka=kAa。其中a,b是V中的线性空间。这个定义就是说把空间中的元素(特殊地想为三维空间的向量)经过一个变换,而这种变换是具有线性的特性的。那么这种变换的从一个元素转变到另外一个元素的对应关系,我们可以用前面的一个矩阵来表示,称为线性变换矩阵。

双线性变换图

在三维空间中,我们有一个球心在原点(XOYZ和 X’OY’Z’的坐标系具有不为零的三个欧拉角)的球面,球面上的每一个点当然都有一个空间矢量,我们让这个球开始沿着X’OY’Z’的三个主轴方向变化,假设X’,Z’方向膨胀,Y’方向收缩,那么我们可以想见,只有这三个方向的位置矢量是沿着原来的方向变化着的,其它的位置矢量在新的位置都会和原来的位置矢量有一个夹角。容易直观的理解,这样的变换是线性变换。

下面我们要考虑的问题是,怎样来描述这样一个变换过程。无疑我们可以用变换矩阵来表明表面上任意一个点在变化前后的位置对应关系。但是如果用X’OY’Z’坐标系(一个基坐标)来描述这种变换的话,要比XOYZ坐标系(另外一个基坐标)下的变换矩阵要简单一些。问题是,在一般情况下,我们得到的变换矩阵都是在一般的基坐标下的矩阵。前面的二维例子已经指出,变换矩阵就是把一个元素(向量)变换到另外一个元素(向量)的过程。那么,我们先来考察这个元素是基坐标的特列会得到什么样的结果。假设我们已经给出这样的一个变换矩阵。 那么我们再来右乘一个基坐标。得到的结果就是这个基向量。变为了一个不和原来的基坐标同方向的矢量。同样地,其它两个基坐标也会变化为其它的方向。进一步我们指出,如果说空间中的向量(因为任何一个向量都可以用无关的基向量表述)。

线性变换算式

我们可以想象,在这种变换矩阵的作用下,能否找到空间中某一个向量经过这种方式变换以后,具有和原来的向量同方向,但是只是它的这个大小具有倍的关系,即我们经常见到的 。假设我们这样的向量存在的话,那么我们的就称为特征向量,(因为其具有线性变换下方向不变的特征), 称为特征值。很显然,我们可以用前面的圆球变椭球来想象,这种情况是可能发生的,但是我们指出,这种情况发生与否只与变换矩阵本身相关。关于变换矩阵的特征值和特征向量,其具体的求法就是求解一个特征多项式,得到特征值后,将每一个特征值反带回元原来的方程组得到特征向量。并且,我们指出,物理意义上相同的同一个线性变换,用不同的基坐标来表示得到的变换矩阵是不一样的(就拿旋转变换来说吧,假设已经有了两个坐标系XOY和 X’OY’,又有第三个坐标X’’OY’’首先与XOY重合,然后在旋转一个角度,那么这个转转变换在XOY和 X’OY’坐标系下的变换矩阵显然是不一样的,因为针对不同坐标系的旋转角度是不一样的)。但是,可以证明同一种变换在不同的基坐标下的变换矩阵是相似的。并且可以证明相似矩阵具有相同的特征多项式,这也就是说同一个变换的特征多项式至于变换本身有关系,而与具体的选择的基坐标无关,是有变换本身的特性决定的。那么,我们自然可以相问,能否找到一个基,使得这个变换矩阵具有最简单的形式(当然是对角矩阵了)。换句话说,就是能否找到一个矩阵和对角性矩阵相似。我们先来在假设第一个问题量是肯定的情况下,来看看第二个问题。我们还是用前面的圆球变椭球来想象,这种物理上的变换是不会随着基坐标系的改变而改变的。那么就圆球变椭球的例子,我们可以看到,在XOY坐标系下的变换矩阵不简单,但是,如果我们将基坐标选择为和 X’OY’重合,那么在这个坐标系下,同样基坐标方向上的那个向量在进行矩阵变换后只是变为原来的λ倍。在这个特征向量作为基的情况下,我们得到的线性变换的矩阵是最简单的对角形矩阵,并且对角线上的元素全是特征向量的特征值,至于具体的排列顺序没有严格的要求,但是,必须和你选择的基坐标的顺序一样,也就是说,如果选择位置的话,那么就同时必须把 对应的特征向量作为X方向的基坐标。同时我们也可以看到,在三维空间中,变换矩阵表示为对角形的三个基向量是线性无关的,这个概念推广就是我们一般的结论那就是一个nxn维变换矩阵能相似于一个对角形矩阵(或者说可以在特征向量的基坐标下变化为对角形)的充要条件就是必须具有n个线性无关的特征向量。如果这一结论对所有矩阵都成立的话就比较好了,但是可惜的是,并非所有矩阵都有和其维数一样多的特征向量。但是,我们可以得出如下的结论。1、属于不同特征值的特征向量彼此之间线性无关,2、如果某一特征值有几个线性无关向的特征向量,那么这几个线性无关向量和其它任何不同特征值的特征向量是线性无关的。3、矩阵相似与对角阵的条件是矩阵有和维数一样多的线性无关特征向量。我们最后指出,实对称矩阵必定可以对角化。最后我们来联系流体力学来看,张量的意思就是把变化到另外一个地方去。那么变形速度张量和一个的右向内积就是得到一个变形速度。

线性变换算式

上一章 欧氏空间 理学派最新章节 下一章 本征值