话本小说网 > 现代小说 > 理学派
本书标签: 现代 

千禧大奖难题

理学派

千禧年大奖难题

千禧年大奖难题(Millennium Prize Problems),又称世界七大数学难题, 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学猜想。拟定这7个问题的数学家之一是怀尔斯,费马大定理这个有300多年历史的难题没被选入的唯一理由就是已经被他解决了。其他的专家,除了克雷促进会会长贾菲(Arthur Jaffe),还有阿蒂亚和在巴黎演讲的泰特,以及法国的孔涅(Alain Connes)和美国的威滕(Edward Witten)。根据克雷数学研究所订定的规则,任何一个猜想的解答,只要发表在数学期刊上,并经过两年的验证期,解决者就会被颁发一百万美元奖金。它们分别是NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳维-斯托克斯方程、BSD猜想。其中庞加莱猜想已被解决。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个数学问题。

中文名

千禧年大奖难题

外文名

Millennium Prize Problems

又称

世界七大数学难题

拟定机构

美国克雷数学研究所

公布年月

2000年5月24日

快速

导航

霍奇猜想庞加莱猜想黎曼假设杨-米尔斯规范场存在性和质量间隔假设NS方程解的存在性与光滑性BSD猜想(贝赫和斯维讷通-戴尔猜想)

P=NP?

主条目:P/NP问题

尽管计算机极大地提高了人类的计算能力,仍有各种复杂的组合类或其它问题随规模的增大其复杂度也快速增大,通常我们认为计算机可以解决的问题只限于多项式时间内,即所需时间最多是问题规模的多项式函数.

有大量的问题,可以在确定型图灵机上用多项式时间求解;还有一些问题,虽然暂时没有能在确定型图灵机上用多项式时间求解的算法,但对于给定的可疑解可以在多项式时间内验证,那么,后者能否归并到前者内呢?

设想在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你他可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器轻易地验证这是对的。

更经典的例子是流动推销员问题,假设你要去3个城市去推销,要使走过的路程最短,需要对这3个城市进行排序。很简单,这一共有6种路线,对比一下就可以找到最短的路线了。但很明显只有3个城市不现实,假设10个城市呢,这一共有10!=3628800种路线!假设你要算出每一条路线的长度,而计算一条路线花费1分钟,如果每天工作8小时,中间不休息,一星期工作5天,一年工作52个星期,这将要花费20多年!显然,这类计算会使用计算机。但由于阶乘数增长太快,连最先进的计算机也不堪重负。[1]

P是否等于NP的问题,即能用多项式时间验证解的问题是否能在多项式时间内找出解,是计算机与算法方面的重大问题,它是斯蒂文·考克(StephenCook)于1971年陈述的。

霍奇猜想

主条目:霍奇猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

庞加莱猜想

主条目:庞加莱猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

俄罗斯数学家佩雷尔曼最终解决了三维庞加莱猜想。Clay数学研究所在2010年为此召开特别会议,为此猜想盖棺定论。

黎曼假设

主条目:黎曼假设

有些数具有不能表示为两个更小的整数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线z=1/2+ib上,其中b为实数,这条直线通常称为临界线。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明,弗里曼·戴森(Freeman Dyson)在《数学世纪-过去100年间30个重大问题》的前言里写道他钟爱的培根式的梦想,寻找一维拟晶理论以及黎曼ζ函数之间的可能联系。如果黎曼假设成立,则在临界线上的ζ函数的零点按照定义是一个拟晶。假如假设成立,ζ函数的零点具有一个傅里叶变换,它由在所有素数幂的对数处的质点构成,而不含别处的质点。这就提供了证明黎曼假设的一个可能方法。[2]

法国数学家孔涅从美国数学家蒙哥马利(Montgomery)描述临界线上ζ函数零点之间间距的公式中得到启发,用量子物理学的思想证明黎曼假设。他写出一组方程,规定一个假设的量子混沌系统,把所有的素数作为它的组成部分。他还证明,这个系统有着对应于临界线上所有ζ函数零点的能级。如果能证明这些与能级对应的零点外没有其他零点,也就证明了黎曼假设。[1]

杨-米尔斯规范场存在性和质量间隔假设

主条目:杨-米尔斯存在性和质量间隔(规范场理论)

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量间隔”(mass gap)假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

NS方程解的存在性与光滑性

主条目:navier stokes(纳维叶-斯托克斯存在性与光滑性)

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

BSD猜想(贝赫和斯维讷通-戴尔猜想)

主条目:BSD猜想(贝赫和斯维讷通-戴尔猜想)

数学家总是被诸如

那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z⑴等于0,那么存在无限多个有理点(解),相反,如果z⑴不等于0,那么只存在有限多个这样的点。

上一章 庞加莱猜想 理学派最新章节 下一章 霍奇猜想(未解决)