声学[shēng xué]
物理学分支学科
本词条是多义词,共2个义项
声学是指研究声波的产生、传播、接收和效应的科学。
声学是物理学中最早深入研究的分支学科之一,随着19世纪无线电技术的发明和应用,声波的产生、传输、接收和测量技术都有了飞跃发展,此声学从古老的经典声学进人了近代声学的发展时期。近代声学的渗透性极强,声学与许多其他学科(如物理、化学、材料、生命、地学、环境等)、工程技术(如机械、建筑、电子、通讯等)及艺术领域相交叉,在这些领域发挥了重要又独特的作用,并进一步发展了相应的理论和技术,从而逐步形成为独立的声学分支,如物理声学、非线性声学、量子声学、分子声学、超声学、光声学、电声学、建筑声学、环境声学、语言声学、生物声学、水声学、大气声学、地声学、生理声学、心理声学、音乐声学及声化学等,所以声学已不仅仅是一门科学,也是一门技术,同时又是一门艺术。[1]
中文名
声学
外文名
Acoustics
学科分类
物理学分支学科之一
研究范围
机械波的产生、传播、接收和效应
释义
研究声波的产生、传播、接收和效应的科学
快速
导航
详细介绍声学方法分类实际应用相关学科交叉学科
研究历史
声音是人类最早研究的物理现象之一,声学是物理学中历史最悠久而当前仍在前沿的唯一分支学科。从上古起直到19世纪,都是把声音理解为可听声的同义语。中国先秦时就说:“情发于声,
,声成文谓之音”,“音和乃成乐”。声、音、乐三者不同,但都指可以听到的现象。同时又说“凡响曰声”,声引起的感觉(声觉)是响,但也称为声,与现代对声的定义相同。西方也是如此,英文acoustics的词源是希腊文ακούειν、akoustikos,意思是“听觉”。世界上最早的声学研究工作在音乐方面。
河南信阳出土的“帠佀”蟠螭文编钟
《吕氏春秋》记载,黄帝令伶伦取竹作律,增损长短成十二律;伏羲作琴,三分损益成十三音。三分损益法就是把管(笛、箫)加长三分之一或减短三分之一,听起来都很和谐,这是最早的声学定律。传说希腊时代,毕达哥拉斯也提出了相似的自然律(但是用弦作基础)。中国1957年河南信阳出土的“帠佀”蟠螭文编钟是为纪念晋国于公元前525年与楚作战而铸的。其音阶完全符合自然律,可以用来演奏现代音乐,这是中国古代声学成就的证明。在以后的2000多年中,对乐律的研究有不少进展。
明朝朱载堉于1584年提出的平均律,与当代西方乐器制造中使用的乐律完全相同,但比西方早提出300年。古代除了对声传播方式的认识外,对声本质的认识与今天的完全相同。在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉。这种认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起。例如,很长时期内古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿的时代对光还有粒子说和波动说的争执,而粒子说取得优势。至于热,“热质”说的影响时间则更长,直到19世纪后期,F. 恩格斯还对它进行过批判。
对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。从那时起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体振动和声的产生原理作过贡献。声的传播问题则更早就受到注意,几乎2000年前中国和西方都有人把声与水面波纹相类比。1635年就有人用远地枪声测声速,假设闪光传播不需要时间。以后方法不断改进,到1738年巴黎科学院用炮声测量,测得结果折合到0°C时,声速为332m/s,与最准确的数值331.45m/s只差1.5‰,这在当时“声学仪器”只有停表和人耳和情况下的确是了不起的成绩。牛顿在1687年出版的《自然哲学的数学原理》中,根据推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质,等等,经过复杂而难懂的推导求得声速应等于大气压与空气密度之比的二次方根。L. 欧拉在1759年根据这个概念提出更清楚的分析方法,求得牛顿的结果。但是由此算出的声速只有288m/s,与实验值相差很大。J. L. R. 达朗伯于1747年首次导出弦的波动方程,并预言可用于声波。直到1816年,P. S. M. 拉普拉斯指出只有在声波传播中空气温度不变时牛顿的推导才正确,而实际上在声波传播中空气密度变化很快,不可能是等温过程,而应该是绝热过程,因此,声速的二次方应是大气压乘以比热容比(定压比热容与定容比热容的比)γ 与密度之比。据此算出声速的理论值与实验值就完全一致了。
直到19世纪末,接收声波的仪器只有人耳。人耳能听到的最低声强大约是10-6W/m2(声压20μPa),在800Hz时,相应的空气质点振动位移大约是10pm(=10-11m),只有空气分子直径的十分之一,可见人耳对声的接收确实惊人。19世纪中就有不少人耳解剖的工作和对人耳功能的探讨,但至今还未能形成完整的听觉理论。对声刺激通过听觉器官、神经系统到达大脑皮层的过程有所了解,但这过程以后大脑皮层如何进行分析、处理、判断还有待进一步研究。音调与频率的关系明确后,对人耳听觉的频率范围和灵敏度也都有不少的研究。发现著名的电路定律的G. S. 欧姆于1843年提出人耳可把复杂的声音分解为谐波分量,并按分音大小判断音品的理论。在欧姆声学理论的启发下,开展了听觉的声学研究(以后称为生理声学和心理声学),并取得重要的成果,其中最有名的是H. von 亥姆霍兹的《音的感知》。在关闭空间(如房间、教室、礼堂、剧院等)里面听语言、音乐,效果有的很好,有的很不好,这引起今天所谓建筑声学或室内音质的研究。但直到1900年W. C. 赛宾得到他的混响公式,才使建筑声学成为真正的科学。
19世纪及以前两三百年的大量声学研究成果的最后总结者是瑞利,他在1877年出版的两卷《声学原理》中集经典声学的大成,开现代声学的先河。至今,特别是在理论分析工作中,还常引用这两卷巨著。他开始讨论的电话理论,已发展为电声学。在20世纪,由于电子学的发展,使用电声换能器和电子仪器设备,可以产生接收和利用任何频率、任何波形、几乎任何强度的声波,已使声学研究的范围远非昔日可比。现代声学中最初发展的分支就是建筑声学和电声学以及相应的电声测量。以后,随着频率范围的扩展,又发展了超声学和次声学;由于手段的改善,进一步研究听觉,发展了生理声学和心理声学;由于对语言和通信广播的研究,发展了语言声学。在第二次世界大战中,开始把超声广泛地用到水下,使水声学得到很大的发展。20世纪初以来,特别是20世纪50年代以来,全世界由于工业交通事业的巨大发展出现了噪声环境污染问题,而促进了噪声、噪声控制、机械振动和冲击研究的发展高速大功率机械应用日益广泛。非线性声学受到普遍重视。此外还有音乐声学、生物声学。这样,逐渐形成了完整的现代声学体系。
详细介绍
释义
就该词的本义,系指任何与听觉有关的事物。但依通常所用,其一系指物理学中关于声音的属性、产生和传播的分支学科;其二系指建筑物适合听讲话、听音乐的质量。
声音由物体(比如乐器)的振动而产生,通过空气传播到耳鼓,耳鼓也产生同频率振动。声音的高低(pitch)取决于物体振动的速度。物体振动快就产生“高音”,振动慢就产生“低音”。物体每秒钟的振动速率,叫做声音的“频率”。
声音的响度(loudness)取决于振动的“振幅”。比如,用力地用琴弓拉一根小提琴弦时,这根弦就大距离地向左右两边摆动,由此产生强振动,发出一个响亮的声音;而轻轻地用琴弓拉一根弦时,这根弦仅仅小距离左右摆动,产生的振动弱而发出一个轻柔的声音。
较小的乐器产生的振动较快,较大的乐器产生的振动较慢。如双簧管的发音比它同类的大管要高。同样的道理,小提琴的发音比大提琴高;小男孩的嗓音比青年男子的嗓音高等等。制约音高的还有其他一些因素,如振动体的质量和张力。总的说,较细(线密度较小)的小提琴弦比较粗(线密度较大)的振动快,发音也高;一根弦的发音会随着弦轴拧紧而音升高。
不同的乐器和人声会发出各种音质(也叫做音色,quality)不同的声音,这是因为几乎所有的振动都是复合的。如一根正在发音的小提琴弦不仅全长振动,各分段同时也在振动,根据分段各自不同的长度发音。这些分段振动发出的音不易用听觉辨别出来,然而这些音都纳入了整体音响效果。泛音列中的任何一个音(如G、D或B)的泛音的数目都是随八度连续升高而倍增。泛音的级数还可说明各泛音的频率与基音频率的比率。如大字组“G”的频率是每秒钟振动96次,高音谱表上的“B”(第五泛音)的振动次数是5×96=480,即每秒钟振动480次。
尽管这些泛音通常可以从复合音中听到,但在某些乐器上,一些泛音可分别获得。用特定的吹奏方法,一件铜管乐器可以发出其他泛音而不是第一泛音,或者说基音。用手指轻触一条弦的二分之一处,然后用弓拉弦,就会发出有特殊音色的第二泛音;在弦长的三分之一处触弦,同样会发出第三泛音等。[在弦乐谱上泛音以音符上方的“o”记号标记。自然泛音(natural harmonics)是从空弦上发出的泛音;人工泛音(artificial harmonics)是从加了按指的弦上发出。]
声音的传播(transmission of sound)通常通过空气。一条弦、一个鼓面或声带等的振动使附近的空气粒子产生同样的振动,这些粒子把振动又传递到其他粒子,这样连续传递直到最初的能渐渐耗尽。压力向邻近空气传播的过程产生我们所说的声波(sound wave)。声波与水运动产生的水波不同,声波没有朝前的运动,只是空气粒子振动并产生松紧交替的压力,依次传递到人或动物的耳鼓产生相同的影响(也就是振动),引起我们主观的“声音”效果。
判断不同的音高或音程,人的听觉遵守一条叫做“韦伯-费希纳定律”(Weber-Fechner law)的感觉法则。这条定律阐明:感觉的增加量和刺激的比率相等。音高的八度感觉是一个2:1的频率比。对声音响度的判断有两个“极限点”:听觉阈和痛觉阈。如果声音强度在听觉阈的极限点认为是1,声音强度在痛觉阈的极限点就是1兆。按照韦伯-费希纳定律,声学家使用的响度级是对数,基于10:1的强度比率,这就是我们知道的1贝(bel,符号 B)。响度的感觉范围被分成12个大单位,1贝的增加量又分成10个称作分贝(decibel,符号 dB)的较小增加量,即1贝=10分贝。1分贝的响度差别对我们的中声区听觉来说大约是人耳可感觉到的最小变化量。
当我们同时听两个振动频率相近的音时,它们的振动必然在固定的音程中以重合形式出现,在感觉上音响彼此互相加强,称为干涉。钢琴调音师在调整某一弦的音高与另一弦一致的过程中,会听到干涉减少,直到随正确的调音逐渐消失。
同光线可以反射一样,亦有声反射(reflection of sound),比如我们都听到过的回声(echo)。同理,如果有阻碍物挡住了声振动的通行会产生声影(sound shadows)。然而不同于光振动,声振动倾向于围绕阻碍物“衍射”(diffract),并且不是任何固体都能产生一个完全的声影。大多数固体都程度不等地传递声振动,而只有少数固体(如玻璃)传递光振动。
共鸣(resonance)一词指一物体对一个特定音的响应,即这一物体由于那个音而振动。如果把两个调音相同的音叉放置在彼此靠近的地方,其中一个发声,另一个会产生和应振动,亦发出这个音。这时首先发音的音叉就是声音发生器(generator),随后和振的音叉就是共鸣器(resonator)。我们经常会发现教堂的某一窗户对管风琴的某个音产生反应,产生振动;房间里的某一金属或玻璃物体对特定的人声或乐器声也会产生类似的响应。
从共鸣这个词的严格科学意义说,这一现象是真正的共鸣(“再发声”)。这一词还有不太严格的用法。它有时指地板、墙壁及大厅顶棚对演奏或演唱的任何音而不局限于某个音的响应。一个大厅共鸣过分或是吸音过强(“太干”)都会使表演者和观众有不适感(一个有回声的大厅常被描述为“共鸣过分”,其实在单纯的声音反射和和应振动的增强之间有明确的区别)。混响时间应以声音每次减弱60分贝为限(原始辐射强度的百万分之一)。
墙壁和顶棚的制造材料应是既回响不过分又吸音不太强。声学工程师已经研究出
医疗
声学在医疗方面的应用包括超声辅助诊断和超声治疗。
超声辅助诊断,最常见的就是B型超声成像,简称B超。通常这种超声诊断应用于腹部非侵入成像。其他常见类型的超声成像-辅助诊断是M超,即心动超声。与X线和CT相比,超声成像的优势在于对人体没有任何辐射伤害。声波是一种机械波,在穿过体内组织的同时也有部分声波反射,通过接受并且处理这些信息丰富的反射声波,我们可以利用这些信息形成体内实时的灰阶图像。在软组织成像中,效果比X光成像要好,但是由于骨头对超声有强烈的反射和吸收作用,因此经颅B超成像还处于起步阶段,国外已有报道使用相控换能器进行B-超经颅成像。它的价钱便宜,成像速度快,准确性高,无副作用,都是至今超声在腹部常规检查中不可替代原因。临床使用的超声辅助诊断技术还包括利用多普勒效应查体内运动(包括胎儿运动及血管内血液的流速等)。
超声治疗,利用超声波是机械波的特性,利用机械波周期震荡的特点,有着不同的临床应用。神经外科在脑的深部用聚焦的超声波造成破坏,治疗脑肿瘤、帕金森综合症、脑血栓等,这样的治疗手段,不仅减少对脑部的损伤(可以进行非开颅手术治疗),而且不影响大脑的其他部分的功能。普通外科中,利用聚焦超声治疗腹部肝脏肿瘤、妇科肿瘤、前列腺癌、膀胱癌,都有显著的疗效。牙科用超声钻钻牙而丝毫不影响软组织,可以大大减少病人的不适。
声学在医学中还有很多可以应用的方面,但发展都很不够或根本未发展,特别是在治疗方面,主要原因是不能确定适当的剂量。中国科学院声学研究所牛凤岐教授,天津医科大学的菅喜岐教授,重庆医科大学的王智彪教授,对聚焦超声的理论、仿真和临床应有有着深入的研究,剂量问题也是他们的研究重点之一。
环境科学
当代重大环境问题之一是噪声污染,社会上对环境污染的意见(包括控告)有一半是噪声问题。除了长期在较强的噪声(90dB以上)中工作要造成耳聋外,不太强的噪声对人也会形成干扰。例如噪声级到70dB,对面谈话就有困难,50dB环境下睡眠、休息已受到严重影响。近年来,对声源发声机理的研究受到注意,也取得了不少成绩。例如,撞击声、气流声、机械振动声等的理论研究都取
得重要成果,根据噪声发生的机理可求得控制噪声的有效方法。
利用回声探测水下物体
振动对人危害也很大,虽然影响的人数比噪声少一些。常日手持凿岩机的矿山工人受振动危害严重时可得到白指病,甚至手指会逐节掉下。全身振动则可达到感觉不适、工作效率降低及至肌体损伤的程度,也应加以保护。对振动的保护一般采取质量弹簧系统或阻尼材料(见隔振、减振)。控制振动也是降低噪声的基本办法。
噪声控制中常遇到的声源功率范围非常大,这也增加了噪声控制工作的复杂性。例如一个大型火箭发动机的噪声功率可开动一架大型客机,而大型客机的噪声功率可开动一辆卡车。工业交通事业的进一步发展,其关键之一是降低噪声。噪声污染是工业化的后果,而降低噪声又是改善环境、提高人的工作效率、延长机器寿命的重要措施。
建筑声学
环境科学不但要克服环境污染,还要进一步研究造成适于人们生活和活动的环境。使在厅堂中听到的音乐优美是建筑声学的任务,厅堂音质的主要问题是室内的混响。赛宾在 20 世纪初由大量实验总结出来的混响理论标志现代声学的开始。混响必须合适(要求因使用目的而异),有时还需要混响可变。在厅堂音质的研究中混响虽是主要因素但不是唯一因素。第二个因素常称为扩散。实验证明,由声源到听者的直达声及其后 50ms 或 100ms 内到达的反射声对音质都有重要影响,反射声的方向分布也是很重要的因素,两侧传来的反射声似乎很重要,全面研究各种因素才能获得良好的音质。
声学[shēng xué]
物理学分支学科
本词条是多义词,共2个义项
声学是指研究声波的产生、传播、接收和效应的科学。
声学是物理学中最早深入研究的分支学科之一,随着19世纪无线电技术的发明和应用,声波的产生、传输、接收和测量技术都有了飞跃发展,此声学从古老的经典声学进人了近代声学的发展时期。近代声学的渗透性极强,声学与许多其他学科(如物理、化学、材料、生命、地学、环境等)、工程技术(如机械、建筑、电子、通讯等)及艺术领域相交叉,在这些领域发挥了重要又独特的作用,并进一步发展了相应的理论和技术,从而逐步形成为独立的声学分支,如物理声学、非线性声学、量子声学、分子声学、超声学、光声学、电声学、建筑声学、环境声学、语言声学、生物声学、水声学、大气声学、地声学、生理声学、心理声学、音乐声学及声化学等,所以声学已不仅仅是一门科学,也是一门技术,同时又是一门艺术。[1]
中文名
声学
外文名
Acoustics
学科分类
物理学分支学科之一
研究范围
机械波的产生、传播、接收和效应
释义
研究声波的产生、传播、接收和效应的科学
快速
导航
详细介绍声学方法分类实际应用相关学科交叉学科
研究历史
声音是人类最早研究的物理现象之一,声学是物理学中历史最悠久而当前仍在前沿的唯一分支学科。从上古起直到19世纪,都是把声音理解为可听声的同义语。中国先秦时就说:“情发于声,
,声成文谓之音”,“音和乃成乐”。声、音、乐三者不同,但都指可以听到的现象。同时又说“凡响曰声”,声引起的感觉(声觉)是响,但也称为声,与现代对声的定义相同。西方也是如此,英文acoustics的词源是希腊文ακούειν、akoustikos,意思是“听觉”。世界上最早的声学研究工作在音乐方面。
河南信阳出土的“帠佀”蟠螭文编钟
《吕氏春秋》记载,黄帝令伶伦取竹作律,增损长短成十二律;伏羲作琴,三分损益成十三音。三分损益法就是把管(笛、箫)加长三分之一或减短三分之一,听起来都很和谐,这是最早的声学定律。传说希腊时代,毕达哥拉斯也提出了相似的自然律(但是用弦作基础)。中国1957年河南信阳出土的“帠佀”蟠螭文编钟是为纪念晋国于公元前525年与楚作战而铸的。其音阶完全符合自然律,可以用来演奏现代音乐,这是中国古代声学成就的证明。在以后的2000多年中,对乐律的研究有不少进展。
明朝朱载堉于1584年提出的平均律,与当代西方乐器制造中使用的乐律完全相同,但比西方早提出300年。古代除了对声传播方式的认识外,对声本质的认识与今天的完全相同。在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉。这种认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起。例如,很长时期内古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿的时代对光还有粒子说和波动说的争执,而粒子说取得优势。至于热,“热质”说的影响时间则更长,直到19世纪后期,F. 恩格斯还对它进行过批判。
对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。从那时起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体振动和声的产生原理作过贡献。声的传播问题则更早就受到注意,几乎2000年前中国和西方都有人把声与水面波纹相类比。1635年就有人用远地枪声测声速,假设闪光传播不需要时间。以后方法不断改进,到1738年巴黎科学院用炮声测量,测得结果折合到0°C时,声速为332m/s,与最准确的数值331.45m/s只差1.5‰,这在当时“声学仪器”只有停表和人耳和情况下的确是了不起的成绩。牛顿在1687年出版的《自然哲学的数学原理》中,根据推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质,等等,经过复杂而难懂的推导求得声速应等于大气压与空气密度之比的二次方根。L. 欧拉在1759年根据这个概念提出更清楚的分析方法,求得牛顿的结果。但是由此算出的声速只有288m/s,与实验值相差很大。J. L. R. 达朗伯于1747年首次导出弦的波动方程,并预言可用于声波。直到1816年,P. S. M. 拉普拉斯指出只有在声波传播中空气温度不变时牛顿的推导才正确,而实际上在声波传播中空气密度变化很快,不可能是等温过程,而应该是绝热过程,因此,声速的二次方应是大气压乘以比热容比(定压比热容与定容比热容的比)γ 与密度之比。据此算出声速的理论值与实验值就完全一致了。
直到19世纪末,接收声波的仪器只有人耳。人耳能听到的最低声强大约是10-6W/m2(声压20μPa),在800Hz时,相应的空气质点振动位移大约是10pm(=10-11m),只有空气分子直径的十分之一,可见人耳对声的接收确实惊人。19世纪中就有不少人耳解剖的工作和对人耳功能的探讨,但至今还未能形成完整的听觉理论。对声刺激通过听觉器官、神经系统到达大脑皮层的过程有所了解,但这过程以后大脑皮层如何进行分析、处理、判断还有待进一步研究。音调与频率的关系明确后,对人耳听觉的频率范围和灵敏度也都有不少的研究。发现著名的电路定律的G. S. 欧姆于1843年提出人耳可把复杂的声音分解为谐波分量,并按分音大小判断音品的理论。在欧姆声学理论的启发下,开展了听觉的声学研究(以后称为生理声学和心理声学),并取得重要的成果,其中最有名的是H. von 亥姆霍兹的《音的感知》。在关闭空间(如房间、教室、礼堂、剧院等)里面听语言、音乐,效果有的很好,有的很不好,这引起今天所谓建筑声学或室内音质的研究。但直到1900年W. C. 赛宾得到他的混响公式,才使建筑声学成为真正的科学。
19世纪及以前两三百年的大量声学研究成果的最后总结者是瑞利,他在1877年出版的两卷《声学原理》中集经典声学的大成,开现代声学的先河。至今,特别是在理论分析工作中,还常引用这两卷巨著。他开始讨论的电话理论,已发展为电声学。在20世纪,由于电子学的发展,使用电声换能器和电子仪器设备,可以产生接收和利用任何频率、任何波形、几乎任何强度的声波,已使声学研究的范围远非昔日可比。现代声学中最初发展的分支就是建筑声学和电声学以及相应的电声测量。以后,随着频率范围的扩展,又发展了超声学和次声学;由于手段的改善,进一步研究听觉,发展了生理声学和心理声学;由于对语言和通信广播的研究,发展了语言声学。在第二次世界大战中,开始把超声广泛地用到水下,使水声学得到很大的发展。20世纪初以来,特别是20世纪50年代以来,全世界由于工业交通事业的巨大发展出现了噪声环境污染问题,而促进了噪声、噪声控制、机械振动和冲击研究的发展高速大功率机械应用日益广泛。非线性声学受到普遍重视。此外还有音乐声学、生物声学。这样,逐渐形成了完整的现代声学体系。
详细介绍
释义
就该词的本义,系指任何与听觉有关的事物。但依通常所用,其一系指物理学中关于声音的属性、产生和传播的分支学科;其二系指建筑物适合听讲话、听音乐的质量。
声音由物体(比如乐器)的振动而产生,通过空气传播到耳鼓,耳鼓也产生同频率振动。声音的高低(pitch)取决于物体振动的速度。物体振动快就产生“高音”,振动慢就产生“低音”。物体每秒钟的振动速率,叫做声音的“频率”。
声音的响度(loudness)取决于振动的“振幅”。比如,用力地用琴弓拉一根小提琴弦时,这根弦就大距离地向左右两边摆动,由此产生强振动,发出一个响亮的声音;而轻轻地用琴弓拉一根弦时,这根弦仅仅小距离左右摆动,产生的振动弱而发出一个轻柔的声音。
较小的乐器产生的振动较快,较大的乐器产生的振动较慢。如双簧管的发音比它同类的大管要高。同样的道理,小提琴的发音比大提琴高;小男孩的嗓音比青年男子的嗓音高等等。制约音高的还有其他一些因素,如振动体的质量和张力。总的说,较细(线密度较小)的小提琴弦比较粗(线密度较大)的振动快,发音也高;一根弦的发音会随着弦轴拧紧而音升高。
不同的乐器和人声会发出各种音质(也叫做音色,quality)不同的声音,这是因为几乎所有的振动都是复合的。如一根正在发音的小提琴弦不仅全长振动,各分段同时也在振动,根据分段各自不同的长度发音。这些分段振动发出的音不易用听觉辨别出来,然而这些音都纳入了整体音响效果。泛音列中的任何一个音(如G、D或B)的泛音的数目都是随八度连续升高而倍增。泛音的级数还可说明各泛音的频率与基音频率的比率。如大字组“G”的频率是每秒钟振动96次,高音谱表上的“B”(第五泛音)的振动次数是5×96=480,即每秒钟振动480次。
尽管这些泛音通常可以从复合音中听到,但在某些乐器上,一些泛音可分别获得。用特定的吹奏方法,一件铜管乐器可以发出其他泛音而不是第一泛音,或者说基音。用手指轻触一条弦的二分之一处,然后用弓拉弦,就会发出有特殊音色的第二泛音;在弦长的三分之一处触弦,同样会发出第三泛音等。[在弦乐谱上泛音以音符上方的“o”记号标记。自然泛音(natural harmonics)是从空弦上发出的泛音;人工泛音(artificial harmonics)是从加了按指的弦上发出。]
声音的传播(transmission of sound)通常通过空气。一条弦、一个鼓面或声带等的振动使附近的空气粒子产生同样的振动,这些粒子把振动又传递到其他粒子,这样连续传递直到最初的能渐渐耗尽。压力向邻近空气传播的过程产生我们所说的声波(sound wave)。声波与水运动产生的水波不同,声波没有朝前的运动,只是空气粒子振动并产生松紧交替的压力,依次传递到人或动物的耳鼓产生相同的影响(也就是振动),引起我们主观的“声音”效果。
判断不同的音高或音程,人的听觉遵守一条叫做“韦伯-费希纳定律”(Weber-Fechner law)的感觉法则。这条定律阐明:感觉的增加量和刺激的比率相等。音高的八度感觉是一个2:1的频率比。对声音响度的判断有两个“极限点”:听觉阈和痛觉阈。如果声音强度在听觉阈的极限点认为是1,声音强度在痛觉阈的极限点就是1兆。按照韦伯-费希纳定律,声学家使用的响度级是对数,基于10:1的强度比率,这就是我们知道的1贝(bel,符号 B)。响度的感觉范围被分成12个大单位,1贝的增加量又分成10个称作分贝(decibel,符号 dB)的较小增加量,即1贝=10分贝。1分贝的响度差别对我们的中声区听觉来说大约是人耳可感觉到的最小变化量。
当我们同时听两个振动频率相近的音时,它们的振动必然在固定的音程中以重合形式出现,在感觉上音响彼此互相加强,称为干涉。钢琴调音师在调整某一弦的音高与另一弦一致的过程中,会听到干涉减少,直到随正确的调音逐渐消失。
同光线可以反射一样,亦有声反射(reflection of sound),比如我们都听到过的回声(echo)。同理,如果有阻碍物挡住了声振动的通行会产生声影(sound shadows)。然而不同于光振动,声振动倾向于围绕阻碍物“衍射”(diffract),并且不是任何固体都能产生一个完全的声影。大多数固体都程度不等地传递声振动,而只有少数固体(如玻璃)传递光振动。
共鸣(resonance)一词指一物体对一个特定音的响应,即这一物体由于那个音而振动。如果把两个调音相同的音叉放置在彼此靠近的地方,其中一个发声,另一个会产生和应振动,亦发出这个音。这时首先发音的音叉就是声音发生器(generator),随后和振的音叉就是共鸣器(resonator)。我们经常会发现教堂的某一窗户对管风琴的某个音产生反应,产生振动;房间里的某一金属或玻璃物体对特定的人声或乐器声也会产生类似的响应。
从共鸣这个词的严格科学意义说,这一现象是真正的共鸣(“再发声”)。这一词还有不太严格的用法。它有时指地板、墙壁及大厅顶棚对演奏或演唱的任何音而不局限于某个音的响应。一个大厅共鸣过分或是吸音过强(“太干”)都会使表演者和观众有不适感(一个有回声的大厅常被描述为“共鸣过分”,其实在单纯的声音反射和和应振动的增强之间有明确的区别)。混响时间应以声音每次减弱60分贝为限(原始辐射强度的百万分之一)。
墙壁和顶棚的制造材料应是既回响不过分又吸音不太强。声学工程师已经研究出
声学[shēng xué]
物理学分支学科
本词条是多义词,共2个义项
声学是指研究声波的产生、传播、接收和效应的科学。
声学是物理学中最早深入研究的分支学科之一,随着19世纪无线电技术的发明和应用,声波的产生、传输、接收和测量技术都有了飞跃发展,此声学从古老的经典声学进人了近代声学的发展时期。近代声学的渗透性极强,声学与许多其他学科(如物理、化学、材料、生命、地学、环境等)、工程技术(如机械、建筑、电子、通讯等)及艺术领域相交叉,在这些领域发挥了重要又独特的作用,并进一步发展了相应的理论和技术,从而逐步形成为独立的声学分支,如物理声学、非线性声学、量子声学、分子声学、超声学、光声学、电声学、建筑声学、环境声学、语言声学、生物声学、水声学、大气声学、地声学、生理声学、心理声学、音乐声学及声化学等,所以声学已不仅仅是一门科学,也是一门技术,同时又是一门艺术。[1]
中文名
声学
外文名
Acoustics
学科分类
物理学分支学科之一
研究范围
机械波的产生、传播、接收和效应
释义
研究声波的产生、传播、接收和效应的科学
快速
导航
详细介绍声学方法分类实际应用相关学科交叉学科
研究历史
声音是人类最早研究的物理现象之一,声学是物理学中历史最悠久而当前仍在前沿的唯一分支学科。从上古起直到19世纪,都是把声音理解为可听声的同义语。中国先秦时就说:“情发于声,
,声成文谓之音”,“音和乃成乐”。声、音、乐三者不同,但都指可以听到的现象。同时又说“凡响曰声”,声引起的感觉(声觉)是响,但也称为声,与现代对声的定义相同。西方也是如此,英文acoustics的词源是希腊文ακούειν、akoustikos,意思是“听觉”。世界上最早的声学研究工作在音乐方面。
河南信阳出土的“帠佀”蟠螭文编钟
《吕氏春秋》记载,黄帝令伶伦取竹作律,增损长短成十二律;伏羲作琴,三分损益成十三音。三分损益法就是把管(笛、箫)加长三分之一或减短三分之一,听起来都很和谐,这是最早的声学定律。传说希腊时代,毕达哥拉斯也提出了相似的自然律(但是用弦作基础)。中国1957年河南信阳出土的“帠佀”蟠螭文编钟是为纪念晋国于公元前525年与楚作战而铸的。其音阶完全符合自然律,可以用来演奏现代音乐,这是中国古代声学成就的证明。在以后的2000多年中,对乐律的研究有不少进展。
明朝朱载堉于1584年提出的平均律,与当代西方乐器制造中使用的乐律完全相同,但比西方早提出300年。古代除了对声传播方式的认识外,对声本质的认识与今天的完全相同。在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉。这种认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起。例如,很长时期内古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿的时代对光还有粒子说和波动说的争执,而粒子说取得优势。至于热,“热质”说的影响时间则更长,直到19世纪后期,F. 恩格斯还对它进行过批判。
对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。从那时起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体振动和声的产生原理作过贡献。声的传播问题则更早就受到注意,几乎2000年前中国和西方都有人把声与水面波纹相类比。1635年就有人用远地枪声测声速,假设闪光传播不需要时间。以后方法不断改进,到1738年巴黎科学院用炮声测量,测得结果折合到0°C时,声速为332m/s,与最准确的数值331.45m/s只差1.5‰,这在当时“声学仪器”只有停表和人耳和情况下的确是了不起的成绩。牛顿在1687年出版的《自然哲学的数学原理》中,根据推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质,等等,经过复杂而难懂的推导求得声速应等于大气压与空气密度之比的二次方根。L. 欧拉在1759年根据这个概念提出更清楚的分析方法,求得牛顿的结果。但是由此算出的声速只有288m/s,与实验值相差很大。J. L. R. 达朗伯于1747年首次导出弦的波动方程,并预言可用于声波。直到1816年,P. S. M. 拉普拉斯指出只有在声波传播中空气温度不变时牛顿的推导才正确,而实际上在声波传播中空气密度变化很快,不可能是等温过程,而应该是绝热过程,因此,声速的二次方应是大气压乘以比热容比(定压比热容与定容比热容的比)γ 与密度之比。据此算出声速的理论值与实验值就完全一致了。
直到19世纪末,接收声波的仪器只有人耳。人耳能听到的最低声强大约是10-6W/m2(声压20μPa),在800Hz时,相应的空气质点振动位移大约是10pm(=10-11m),只有空气分子直径的十分之一,可见人耳对声的接收确实惊人。19世纪中就有不少人耳解剖的工作和对人耳功能的探讨,但至今还未能形成完整的听觉理论。对声刺激通过听觉器官、神经系统到达大脑皮层的过程有所了解,但这过程以后大脑皮层如何进行分析、处理、判断还有待进一步研究。音调与频率的关系明确后,对人耳听觉的频率范围和灵敏度也都有不少的研究。发现著名的电路定律的G. S. 欧姆于1843年提出人耳可把复杂的声音分解为谐波分量,并按分音大小判断音品的理论。在欧姆声学理论的启发下,开展了听觉的声学研究(以后称为生理声学和心理声学),并取得重要的成果,其中最有名的是H. von 亥姆霍兹的《音的感知》。在关闭空间(如房间、教室、礼堂、剧院等)里面听语言、音乐,效果有的很好,有的很不好,这引起今天所谓建筑声学或室内音质的研究。但直到1900年W. C. 赛宾得到他的混响公式,才使建筑声学成为真正的科学。
19世纪及以前两三百年的大量声学研究成果的最后总结者是瑞利,他在1877年出版的两卷《声学原理》中集经典声学的大成,开现代声学的先河。至今,特别是在理论分析工作中,还常引用这两卷巨著。他开始讨论的电话理论,已发展为电声学。在20世纪,由于电子学的发展,使用电声换能器和电子仪器设备,可以产生接收和利用任何频率、任何波形、几乎任何强度的声波,已使声学研究的范围远非昔日可比。现代声学中最初发展的分支就是建筑声学和电声学以及相应的电声测量。以后,随着频率范围的扩展,又发展了超声学和次声学;由于手段的改善,进一步研究听觉,发展了生理声学和心理声学;由于对语言和通信广播的研究,发展了语言声学。在第二次世界大战中,开始把超声广泛地用到水下,使水声学得到很大的发展。20世纪初以来,特别是20世纪50年代以来,全世界由于工业交通事业的巨大发展出现了噪声环境污染问题,而促进了噪声、噪声控制、机械振动和冲击研究的发展高速大功率机械应用日益广泛。非线性声学受到普遍重视。此外还有音乐声学、生物声学。这样,逐渐形成了完整的现代声学体系。
详细介绍
释义
就该词的本义,系指任何与听觉有关的事物。但依通常所用,其一系指物理学中关于声音的属性、产生和传播的分支学科;其二系指建筑物适合听讲话、听音乐的质量。
声音由物体(比如乐器)的振动而产生,通过空气传播到耳鼓,耳鼓也产生同频率振动。声音的高低(pitch)取决于物体振动的速度。物体振动快就产生“高音”,振动慢就产生“低音”。物体每秒钟的振动速率,叫做声音的“频率”。
声音的响度(loudness)取决于振动的“振幅”。比如,用力地用琴弓拉一根小提琴弦时,这根弦就大距离地向左右两边摆动,由此产生强振动,发出一个响亮的声音;而轻轻地用琴弓拉一根弦时,这根弦仅仅小距离左右摆动,产生的振动弱而发出一个轻柔的声音。
较小的乐器产生的振动较快,较大的乐器产生的振动较慢。如双簧管的发音比它同类的大管要高。同样的道理,小提琴的发音比大提琴高;小男孩的嗓音比青年男子的嗓音高等等。制约音高的还有其他一些因素,如振动体的质量和张力。总的说,较细(线密度较小)的小提琴弦比较粗(线密度较大)的振动快,发音也高;一根弦的发音会随着弦轴拧紧而音升高。
不同的乐器和人声会发出各种音质(也叫做音色,quality)不同的声音,这是因为几乎所有的振动都是复合的。如一根正在发音的小提琴弦不仅全长振动,各分段同时也在振动,根据分段各自不同的长度发音。这些分段振动发出的音不易用听觉辨别出来,然而这些音都纳入了整体音响效果。泛音列中的任何一个音(如G、D或B)的泛音的数目都是随八度连续升高而倍增。泛音的级数还可说明各泛音的频率与基音频率的比率。如大字组“G”的频率是每秒钟振动96次,高音谱表上的“B”(第五泛音)的振动次数是5×96=480,即每秒钟振动480次。
尽管这些泛音通常可以从复合音中听到,但在某些乐器上,一些泛音可分别获得。用特定的吹奏方法,一件铜管乐器可以发出其他泛音而不是第一泛音,或者说基音。用手指轻触一条弦的二分之一处,然后用弓拉弦,就会发出有特殊音色的第二泛音;在弦长的三分之一处触弦,同样会发出第三泛音等。[在弦乐谱上泛音以音符上方的“o”记号标记。自然泛音(natural harmonics)是从空弦上发出的泛音;人工泛音(artificial harmonics)是从加了按指的弦上发出。]
声音的传播(transmission of sound)通常通过空气。一条弦、一个鼓面或声带等的振动使附近的空气粒子产生同样的振动,这些粒子把振动又传递到其他粒子,这样连续传递直到最初的能渐渐耗尽。压力向邻近空气传播的过程产生我们所说的声波(sound wave)。声波与水运动产生的水波不同,声波没有朝前的运动,只是空气粒子振动并产生松紧交替的压力,依次传递到人或动物的耳鼓产生相同的影响(也就是振动),引起我们主观的“声音”效果。
判断不同的音高或音程,人的听觉遵守一条叫做“韦伯-费希纳定律”(Weber-Fechner law)的感觉法则。这条定律阐明:感觉的增加量和刺激的比率相等。音高的八度感觉是一个2:1的频率比。对声音响度的判断有两个“极限点”:听觉阈和痛觉阈。如果声音强度在听觉阈的极限点认为是1,声音强度在痛觉阈的极限点就是1兆。按照韦伯-费希纳定律,声学家使用的响度级是对数,基于10:1的强度比率,这就是我们知道的1贝(bel,符号 B)。响度的感觉范围被分成12个大单位,1贝的增加量又分成10个称作分贝(decibel,符号 dB)的较小增加量,即1贝=10分贝。1分贝的响度差别对我们的中声区听觉来说大约是人耳可感觉到的最小变化量。
当我们同时听两个振动频率相近的音时,它们的振动必然在固定的音程中以重合形式出现,在感觉上音响彼此互相加强,称为干涉。钢琴调音师在调整某一弦的音高与另一弦一致的过程中,会听到干涉减少,直到随正确的调音逐渐消失。
同光线可以反射一样,亦有声反射(reflection of sound),比如我们都听到过的回声(echo)。同理,如果有阻碍物挡住了声振动的通行会产生声影(sound shadows)。然而不同于光振动,声振动倾向于围绕阻碍物“衍射”(diffract),并且不是任何固体都能产生一个完全的声影。大多数固体都程度不等地传递声振动,而只有少数固体(如玻璃)传递光振动。
共鸣(resonance)一词指一物体对一个特定音的响应,即这一物体由于那个音而振动。如果把两个调音相同的音叉放置在彼此靠近的地方,其中一个发声,另一个会产生和应振动,亦发出这个音。这时首先发音的音叉就是声音发生器(generator),随后和振的音叉就是共鸣器(resonator)。我们经常会发现教堂的某一窗户对管风琴的某个音产生反应,产生振动;房间里的某一金属或玻璃物体对特定的人声或乐器声也会产生类似的响应。
从共鸣这个词的严格科学意义说,这一现象是真正的共鸣(“再发声”)。这一词还有不太严格的用法。它有时指地板、墙壁及大厅顶棚对演奏或演唱的任何音而不局限于某个音的响应。一个大厅共鸣过分或是吸音过强(“太干”)都会使表演者和观众有不适感(一个有回声的大厅常被描述为“共鸣过分”,其实在单纯的声音反射和和应振动的增强之间有明确的区别)。混响时间应以声音每次减弱60分贝为限(原始辐射强度的百万分之一)。
墙壁和顶棚的制造材料应是既回响不过分又吸音不太强。声学工程师已经研究出
声学[shēng xué]
物理学分支学科
本词条是多义词,共2个义项
声学是指研究声波的产生、传播、接收和效应的科学。
声学是物理学中最早深入研究的分支学科之一,随着19世纪无线电技术的发明和应用,声波的产生、传输、接收和测量技术都有了飞跃发展,此声学从古老的经典声学进人了近代声学的发展时期。近代声学的渗透性极强,声学与许多其他学科(如物理、化学、材料、生命、地学、环境等)、工程技术(如机械、建筑、电子、通讯等)及艺术领域相交叉,在这些领域发挥了重要又独特的作用,并进一步发展了相应的理论和技术,从而逐步形成为独立的声学分支,如物理声学、非线性声学、量子声学、分子声学、超声学、光声学、电声学、建筑声学、环境声学、语言声学、生物声学、水声学、大气声学、地声学、生理声学、心理声学、音乐声学及声化学等,所以声学已不仅仅是一门科学,也是一门技术,同时又是一门艺术。[1]
中文名
声学
外文名
Acoustics
学科分类
物理学分支学科之一
研究范围
机械波的产生、传播、接收和效应
释义
研究声波的产生、传播、接收和效应的科学
快速
导航
详细介绍声学方法分类实际应用相关学科交叉学科
研究历史
声音是人类最早研究的物理现象之一,声学是物理学中历史最悠久而当前仍在前沿的唯一分支学科。从上古起直到19世纪,都是把声音理解为可听声的同义语。中国先秦时就说:“情发于声,
,声成文谓之音”,“音和乃成乐”。声、音、乐三者不同,但都指可以听到的现象。同时又说“凡响曰声”,声引起的感觉(声觉)是响,但也称为声,与现代对声的定义相同。西方也是如此,英文acoustics的词源是希腊文ακούειν、akoustikos,意思是“听觉”。世界上最早的声学研究工作在音乐方面。
河南信阳出土的“帠佀”蟠螭文编钟
《吕氏春秋》记载,黄帝令伶伦取竹作律,增损长短成十二律;伏羲作琴,三分损益成十三音。三分损益法就是把管(笛、箫)加长三分之一或减短三分之一,听起来都很和谐,这是最早的声学定律。传说希腊时代,毕达哥拉斯也提出了相似的自然律(但是用弦作基础)。中国1957年河南信阳出土的“帠佀”蟠螭文编钟是为纪念晋国于公元前525年与楚作战而铸的。其音阶完全符合自然律,可以用来演奏现代音乐,这是中国古代声学成就的证明。在以后的2000多年中,对乐律的研究有不少进展。
明朝朱载堉于1584年提出的平均律,与当代西方乐器制造中使用的乐律完全相同,但比西方早提出300年。古代除了对声传播方式的认识外,对声本质的认识与今天的完全相同。在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉。这种认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起。例如,很长时期内古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿的时代对光还有粒子说和波动说的争执,而粒子说取得优势。至于热,“热质”说的影响时间则更长,直到19世纪后期,F. 恩格斯还对它进行过批判。
对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。从那时起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体振动和声的产生原理作过贡献。声的传播问题则更早就受到注意,几乎2000年前中国和西方都有人把声与水面波纹相类比。1635年就有人用远地枪声测声速,假设闪光传播不需要时间。以后方法不断改进,到1738年巴黎科学院用炮声测量,测得结果折合到0°C时,声速为332m/s,与最准确的数值331.45m/s只差1.5‰,这在当时“声学仪器”只有停表和人耳和情况下的确是了不起的成绩。牛顿在1687年出版的《自然哲学的数学原理》中,根据推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质,等等,经过复杂而难懂的推导求得声速应等于大气压与空气密度之比的二次方根。L. 欧拉在1759年根据这个概念提出更清楚的分析方法,求得牛顿的结果。但是由此算出的声速只有288m/s,与实验值相差很大。J. L. R. 达朗伯于1747年首次导出弦的波动方程,并预言可用于声波。直到1816年,P. S. M. 拉普拉斯指出只有在声波传播中空气温度不变时牛顿的推导才正确,而实际上在声波传播中空气密度变化很快,不可能是等温过程,而应该是绝热过程,因此,声速的二次方应是大气压乘以比热容比(定压比热容与定容比热容的比)γ 与密度之比。据此算出声速的理论值与实验值就完全一致了。
直到19世纪末,接收声波的仪器只有人耳。人耳能听到的最低声强大约是10-6W/m2(声压20μPa),在800Hz时,相应的空气质点振动位移大约是10pm(=10-11m),只有空气分子直径的十分之一,可见人耳对声的接收确实惊人。19世纪中就有不少人耳解剖的工作和对人耳功能的探讨,但至今还未能形成完整的听觉理论。对声刺激通过听觉器官、神经系统到达大脑皮层的过程有所了解,但这过程以后大脑皮层如何进行分析、处理、判断还有待进一步研究。音调与频率的关系明确后,对人耳听觉的频率范围和灵敏度也都有不少的研究。发现著名的电路定律的G. S. 欧姆于1843年提出人耳可把复杂的声音分解为谐波分量,并按分音大小判断音品的理论。在欧姆声学理论的启发下,开展了听觉的声学研究(以后称为生理声学和心理声学),并取得重要的成果,其中最有名的是H. von 亥姆霍兹的《音的感知》。在关闭空间(如房间、教室、礼堂、剧院等)里面听语言、音乐,效果有的很好,有的很不好,这引起今天所谓建筑声学或室内音质的研究。但直到1900年W. C. 赛宾得到他的混响公式,才使建筑声学成为真正的科学。
19世纪及以前两三百年的大量声学研究成果的最后总结者是瑞利,他在1877年出版的两卷《声学原理》中集经典声学的大成,开现代声学的先河。至今,特别是在理论分析工作中,还常引用这两卷巨著。他开始讨论的电话理论,已发展为电声学。在20世纪,由于电子学的发展,使用电声换能器和电子仪器设备,可以产生接收和利用任何频率、任何波形、几乎任何强度的声波,已使声学研究的范围远非昔日可比。现代声学中最初发展的分支就是建筑声学和电声学以及相应的电声测量。以后,随着频率范围的扩展,又发展了超声学和次声学;由于手段的改善,进一步研究听觉,发展了生理声学和心理声学;由于对语言和通信广播的研究,发展了语言声学。在第二次世界大战中,开始把超声广泛地用到水下,使水声学得到很大的发展。20世纪初以来,特别是20世纪50年代以来,全世界由于工业交通事业的巨大发展出现了噪声环境污染问题,而促进了噪声、噪声控制、机械振动和冲击研究的发展高速大功率机械应用日益广泛。非线性声学受到普遍重视。此外还有音乐声学、生物声学。这样,逐渐形成了完整的现代声学体系。
详细介绍
释义
就该词的本义,系指任何与听觉有关的事物。但依通常所用,其一