话本小说网 > 玄幻奇幻小说 > 神级无限融合
本书标签: 玄幻奇幻  更新  玄幻     

第八十六章番外24

神级无限融合

完整地描写电磁相互作用。

一般在描写电磁系统时,不需要完整的量子场论。一个比较简单的模型,是将带电荷的粒子,当作一个处于经典电磁场中的量子力学物体。这个手段从量子力学的一开始,就已经被使用了。比如说,氢原子的电子状态,可以近似地使用经典的1/r电压场来计算。但是,在电磁场中的量子起伏起一个重要作用的情况下,(比如带电粒子发射一颗光子)这个近似方法就失效了。

强弱相互作用

强相互作用的量子场论是量子色动力学,这个理论描述原子核所组成的粒子(夸克和胶子)之间的相互作用。弱相互作用与电磁相互作用结合在电弱相互作用中。

万有引力

至今为止,仅仅万有引力无法使用量子力学来描述。因此,在黑洞附近,或者将整个宇宙作为整体来看的话,量子力学可能遇到了其适用边界。使用量子力学,或者使用广义相对论,均无法解释,一个粒子到达黑洞的奇点时的物理状况。广义相对论预言,该粒子会被压缩到密度无限大;而量子力学则预言,由于粒子的位置无法被确定,因此,它无法达到密度无限大,而可以逃离黑洞。因此20世纪最重要的两个新的物理理论,量子力学和广义相对论互相矛盾。寻求解决这个矛盾的答案,是理论物理学的一个重要目标(量子引力)。但是至今为止,找到引力的量子理论的问题,显然非常困难。虽然,一些亚经典的近似理论有所成就,比如对霍金辐射的预言,但是至今为止,无法找到一个整体的量子引力的理论。这个方面的研究包括弦理论等。

应用学科

在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。

在上述这些发明创造中,量子力学的概念和数学描述,往往很少直接起了一个作用,而是固体物理学、化学、材料科学或者核物理学的概念和规则,起了主要作用,在所有这些学科中,量子力学均是其基础,这些学科的基本理论,全部是建立在量子力学之上的。以下仅能列举出一些最显著的量子力学的应用,而且,这些列出的例子,肯定也非常不完全。

原子物理学

原子物理和化学

任何物质的化学特性,均是由其原子和分子的电子结构所决定的。通过解析包括了所有相关的原子核和电子的多粒子薛定谔方程,可以计算出该原子或分子的电子结构。在实践中,人们认识到,要计算这样的方程实在太复杂,而且在许多情况下,只要使用简化的模型和规则,就足以确定物质的化学特性了。在建立这样的简化的模型中,量子力学起了一个非常重要的作用。

一个在化学中非常常用的模型是原子轨道。在这个模型中,分子的电子的多粒子状态,通过将每个原子的电子单粒子状态加到一起形成。这个模型包含着许多不同的近似(比如忽略电子之间的排斥力、电子运动与原子核运动脱离等等),它可以近似地、准确地描写原子的能级。除比较简单的计算过程外,这个模型还可以直觉地给出电子排布以及轨道的图像描述。

通过原子轨道,人们可以使用非常简单的原则(洪德定则)来区分电子排布。化学稳定性的规则(八隅律、幻数)也很容易从这个量子力学模型中推导出来。

通过将数个原子轨道加在一起,可以将这个模型扩展为分子轨道。由于分子一般不是球对称的,因此这个计算要比原子轨道要复杂得多。理论化学中的分支,量子化学和计算机化学,专门使用近似的薛定谔方程,来计算复杂的分子的结构及其化学特性的学科。

原子核物理学

原子核物理学是研究原子核性质的物理学分支。它主要有三大领域:研究各类次原子粒子与它们之间的关系、分类与分析原子核的结构、带动相应的核子技术进展。

固体物理学

为什么金刚石硬、脆和透明,而同样由碳组成的石墨却软而不透明?为什么金属导热、导电,有金属光泽?发光二极管、二极管和三极管的工作原理是什么?铁为什么有铁磁性?超导的原理是什么?

以上这些例子,可以使人想象到固体物理学的多样性。事实上,凝聚态物理学是物理学中最大的分支,而所有凝聚态物理学中的现象,从微观角度上,都只有通过量子力学,才能正确地被解释。使用经典物理,顶多只能从表面上和现象上,提出一部分的解释。

以下列出了一些量子效应特别强的现象:

晶格现象

声子、热传导

静电现象

压电效应

电导

绝缘体、导体

磁性

铁磁性

展开全部

量子信息学

研究的

焦点在于一个可靠的、处理量子状态的方法。由于量子状态可以叠加的特性。理论上,量子计算机可以高度平行运算。它可以应用在密码学中。理论上,量子密码术可以产生理论上绝对安全的密码。另一个当前的研究项目,是将量子状态利用量子纠缠态传送到远处的量子隐形传送。

量子力学解释

量子力学问题

按动力学意义上说,量子力学的运动方程是,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。

量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。

量子力学可以算作是被验证的最严密的物理理论之一了。至今为止,所有的实验数据均无法推翻量子力学。大多数物理学家认为,它“几乎”在所有情况下,正确地描写能量和物质的物理性质。虽然如此,量子力学中,依然存在着概念上的弱点和缺陷,除上述的万有引力的量子理论的缺乏外,至今为止对量子力学的解释存在着争议。

解释

假如,量子力学的数学模型,它的适用范围内的完整的物理现象的描写的话,我们发现测量过程中,每次测量结果的机率性的意义,与经典统计理论中的机率,意义不同。即使完全相同的系统的测量值,也会是随机的。这与经典的统计力学中的机率结果不一样。在经典的统计力学中,测量结果的不同,它是由于实验者无法完全复制一个系统,而不是因为测量仪器无法精确地进行测量。在量子力学的标准解释中,测量的随机性是基本性的,它是由量子力学的理论基础获得的。由于量子力学尽管无法预言单一实验的结果,依然是一个完整的自然的描写,使得人们不得不得出以下结论:世界上不存在通过单一测量可以获得的客观的系统特性。一个量子力学状态的客观特性,只有在描写其整组实验所体现出的统计分布中,才能获得。爱因斯坦(“量子力学不完整”,“上帝不掷骰子”)与尼尔斯·玻尔是最早对这个问题进行争论的。玻尔维护不确定原理和互补原理。在多年的、激烈的讨论中,爱因斯坦不得不接受不确定原理,而玻尔则削弱了他的互补原理,这最后导致了今天的哥本哈根诠释。

今天,大多数物理学家,接受了量子力学描述所有一个系统可知的特性,以及测量过程无法改善,不是因为我们的技术问题所导致的的见解。这个解释的一个结果是,测量过程扰动薛定谔方程,使得系统塌缩到它的本征态。除哥本哈根诠释外,还有人提出过一些其它解释方式。包括:

1.戴维·玻姆提出了一个不局部的,带有隐变量的理论(隐变量理论)。在这个解释中,波函数被理解为粒子的一个引波。从结果上,这个理论预言的实验结果,与非相对论哥本哈根诠释的预言完全一样,因此,使用实验手段无法鉴别这两个解释。虽然,这个理论的预言是决定性的,但是,由于不确定原理无法推测出隐变量的精确状态。其结果是与哥本哈根诠释一样,使用这来解释实验的结果,也是一个概率性的结果。至今为止,还不能确定这个解释,是否能够扩展到相对论量子力学上去。路易斯·德布罗意和其他人也提出过类似的隐藏系数解释。

2.休·艾弗雷特三世提出的多世界诠释认为,所有量子理论所做出的可能性的预言,全部同时实现,这些现实成为互相之间一般无关的平行宇宙。在这个诠释中,总的波函数不塌缩,它的发展是决定性的。但是由于我们作为观察者,无法同时在所有的平行宇宙中存在,因此,我们只观察到在我们的宇宙中的测量值,而在其它宇宙中的平行,我们则观察到他们的宇宙中的测量值。这个诠释不需要对测量的特殊的对待。薛定谔方程在这个理论中所描写的也是所有平行宇宙的总和。

3.微观作用原理认为[7](详见《量子笔迹》),微观粒子之间存在微观作用力(微观作用力既可以演化到宏观力学也可以演化到微观力学),微观作用是量子力学背后更深层次的理论,微观粒子之所以表现出波动性是对微观作用力的间接客观反映,在微观作用原理之下量子力学面临的难题和困惑得到理解和解释。

4.另一个解释方向是将经典逻辑改成一个量子逻辑来排除解释的困难。

以下列举了对量子力学的解释,最重要的实验和思想实验:

1.爱因斯坦-波多斯基-罗森悖论以及相关的贝尔不等式,明显地显示了,量子力学理论无法使用“局部”隐变量来解释;不排除非局部隐藏系数的可能性。

2.双缝实验是一个非常重要的量子力学试验,从这个试验中,也可以看到量子力学的测量问题和解释的困难性,这是最简单而明显地显示波粒二象性的试验了。

3.薛定谔的猫

量子力学随机性能被推翻吗

有一则名为“薛定谔的猫终于有救了,Nature 研究首次观测到量子跃迁过程”的新闻报道刷屏。诸如“耶鲁大学实验推翻量子力学随机性”“爱因斯坦又蒙对了”等等标题党纷纷出现,仿佛战无不胜的量子力学一夜之间阴沟翻船一样,很多文青纷纷哀叹宿命论又回来了。然而,事实真的如此吗?我们来一探究竟[8]。

1.什么是量子力学随机性[8]?

根据数理双修的大师冯诺依曼的总结,量子力学有两个基本的过程,一个是按照薛定谔方程确定性地演化,另一个是因为测量导致的量子叠加态随机塌缩。薛定谔方程是量子力学核心方程,它是确定性的,跟随机性无关。那么量子力学的随机性只来自于后者,也就是来自于测量[8]。

这个测量随机性正是让爱因斯坦最无法理解的地方,他用了“上帝不会掷骰子”这个比喻来反对测量随机性,而薛定谔也假想了测量一只猫的生死叠加态来反对过它[8]。

但是无数的实验证实,去直接测量一个量子叠加态,它的结果就是随机在其中一个本征态上(概率为叠加态中每个本征态的系数模平方),这就是量子力学最重要的测量问题。为了解决这个问题,诞生了量子力学多个诠释,其中主流的三个诠释为 哥本哈根诠释 、 多世界诠释 和 一致历史诠释[8]。

哥本哈根诠释认为,测量会导致量子态塌缩,即量子态瞬间被破坏,随机跌到一个本征态上;多世界诠释觉得哥本哈根诠释太玄了,于是就搞了个更玄的,认为每一次测量就是世界的一次分裂,所有本征态的结果都存在,只是互相完全独立(正交),干扰不到对方,我们只是随机地在某一个世界当中;一致历史诠释引入了量子退相干过程,解决了从叠加态到经典概率分布的问题。但是在选择哪个经典概率上,还是回到了哥本哈根诠释和多世界诠释的争论[8]。

从逻辑上看,多世界诠释和一致历史诠释的结合对解释测量问题似乎是最完美的,多个世界组成一个总的叠加态,即保留了“上帝视角”的确定性,又保留了单一世界视角的随机性。但物理学是以实验为准的科学,这些诠释预言了同样的物理结果,相互之间不可证伪,那么物理意义就是等价的,所以学术圈还是主要采用哥本哈根诠释,即用塌缩(collapse)这个词代表测量量子态的随机性[8]。

2.耶鲁大学的论文说了什么?[8]

耶鲁大学这篇Nature论文先铺垫一个量子力学知识,那就是量子跃迁是一个量子叠加态完全按照薛定谔方程演化的确定性过程,即在基态|G>上的概率幅按照薛定谔方程连续地转移到激发态|E>上,再连续地转移回来,形成一个振荡(频率称为拉比频率),它属于冯诺依曼总结的第一类过程。

这篇论文测的就是这样一个确定性的量子跃迁,所以得到确定性结果毫无意外。文章的卖点在于怎样不让这个测量破坏掉原本的叠加态,或者怎样让量子跃迁不会因突如其来的测量而停止。这个也不是多么神秘的技术,而是量子信息领域目前广泛应用的“弱测量”方法。

这个实验用的是超导电路人工构建的三能级系统,信噪比相比真实的原子能级还要差很多[8]。

实验用到的弱测量技术,就是把原本基态|G>的粒子数(这个实验用的是超导电流)分出一点点,让它和|D>形成叠加态,同时|G>剩下的粒子数继续和|B>叠加,这两个叠加态(几乎)是独立的,(几乎)不互相影响。例如通过光(微波)强控制两个跃迁拉比频率,就能让概率幅在|B>接近1时,在|D>上也接近1。这时测量|G>和|B>的叠加态,会发现粒子数塌缩在了|B>上面。此时尽管|G>和|D>的叠加态没塌缩,也能知道概率幅都在|D>上面,再测量|G>和|D>的叠加态结果就是粒子数塌缩在了|D>上。所以测量|G>和|B>的叠加态本身还是个引起随机塌缩的测量,但这个测量对于|G>和|D>的叠加态来说却不引起叠加态塌缩(仅有很微弱的改变),同时还能监视|G>和|D>的叠加态演化到什么程度了,这就成为了相对|G>和|D>叠加态的弱测量[8]。

如果这个三能级系统只有一个粒子,那么塌缩在|B>上的粒子数为1时,塌缩在|D>和|G>上的粒子数为零。但这个三能级系统是用超导电流人工制备出来的,相当于有很多电子可用。当一些电子塌缩在|B>上之后,仍然有一些电子处于|D>和|G>的叠加态。所以多粒子系统也保证了这个弱测量实验可以进行。这和冷原子实验非常类似,即大量原子具备相同的能级系统,叠加态的概率可以反映在相对原子数[8]上。

3.上帝依然掷骰子[8]

用一句话总结,这篇nature论文里,用了实验技巧去弱测量一个确定性过程,主动避开了对这个过程能导致随机结果的测量,一切都符合量子力学预言,对量子力学的测量随机性没任何影响。所以爱因斯坦没翻身,上帝依然掷骰子[8]。

这篇nature论文只是又一次验证了量子力学的正确,为什么会引起这么大的误解?这里我不得不吐槽一下。这与作者们在摘要和引言里立的错误靶子脱不了干系。估计是为了制造大新闻,他们找到了玻尔在1913年提出的量子跃迁瞬时性的想法做靶子,但这个想法早在1925年海森堡方程和1926年薛定谔方程提出(也就是量子力学正式建立)之后就被否定了,他们在论文里也明确说了实验其实验证了薛定谔关于跃迁是连续确定演化的观点。把玻尔搬出来,很可能是为了营造一个和爱因斯坦对立的效果,延续世纪论战,多博取关注。但是 在量子跃迁这个问题上,是玻尔最早的想法错了,海森堡和薛定谔对了,不关爱因斯坦什么事 。

这篇论文的英文报道的作者是Phillip Ball,他尽管写过很多优秀的科学新闻,但这次大概是碰到了自由发挥一通,就变成了科学传播的“车祸现场”[8]。知识盲点,整个报道写的也是故弄玄虚,没抓到重点,还把海森堡拉去陪玻尔一起给瞬时跃迁背锅(不知道海森堡方程和薛定谔方程实质等价吗?)。然后中文媒体再翻译过来,其它自媒体再

量子[liàng zǐ]

科普中国 | 本词条由“科普中国”科学百科词条编写与应用工作项目审核

审阅专家 周正威

量子(quantum)是现代物理的重要概念。即一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。

量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”,它最早是由德国物理学家M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍,从而很好地解释了黑体辐射的实验现象。

后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。

自从普朗克提出量子这一概念以来,经爱因斯坦、玻尔、德布罗意、海森伯、薛定谔、狄拉克、玻恩等人的完善,在20世纪的前半期,初步建立了完整的量子力学理论。绝大多数物理学家将量子力学视为理解和描述自然的基本理论。

中文名

量子

外文名

Quantum

适用范围

微观物理世界

别名

能量子

提出者

普朗克

快速

导航

发展历史量子通信

定义

一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。量子英文名称量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”。在物理学中常用到量子的概念,指一个不可分割的基本个体。例如,“光的量子”(光子)是一定频率的光的基本能量单位。而延伸出的量子力学、量子光学等成为不同的专业研究领域。其基本概念为所有的有形性质是“可量子化的”。“量子化”指其物理量的数值是离散的,而不是连续地任意取值。例如,在原子中,电子的能量是可量子化的。这决定了原子的稳定性和发射光谱等一般问题。绝大多数物理学家将量子力学视为了解和描述自然的基本理论。

通俗地说,量子是能表现出某物质或物理量特性的最小单元。

发展历史

提出概念

在经典物理学中,根据能量均分定理:能量是连续变化的,可以取任意值。19世纪后期,科学家们发现很多物理现象无法用经典理论解释。当时德国物理界聚焦于黑体辐射问题的研究。1900年左右,M·普朗克试图解决黑体辐射问题,他大胆提出量子假设,并得出了普朗克辐射定律,沿用至今。普朗克提出:像原子作为一切物质的构成单位一样,“能量子”(量子)是能量的最小单位。物体吸收或发射电磁辐射,只能以能量量子的方式进行。普朗克在1900年12月14日的德国物理学学会会议中第一次发表能量量子化数值、一个分子摩尔(mol)的数值及基本电荷等。其数值比以前更准确,提出的理论也成功解决了黑体辐射的问题,标志着量子力学的诞生。

1905年,德国物理学家爱因斯坦把量子概念引进光的传播过程,提出“光量子”(光子)的概念,并提出光同时具有波动和粒子的性质,即光的“波粒二象性”。

20世纪20年代,法国物理学家德布罗意提出“物质波”概念,即一切物质粒子均具备波粒二象性;德国物理学家海森伯等人建立了量子矩阵力学;奥地利物理学家薛定谔建立了量子波动力学。量子理论的发展进入了量子力学阶段。

1928年,英国物理学家狄拉克完成了矩阵力学和波动力学之间的数学等价证明,对量子力学理论进行了系统的总结,并将两大理论体系——相对论和量子力学成功地结合起来,揭开了量子场论的序幕。量子理论是现代物理学的两大基石之一,从微观层面理解宏观现象提供了理论基础。

量子假设的提出有力地冲击了经典物理学,促进物理学进入微观层面,奠基现代物理学。但直到现在,物理学家关于量子力学的一些假设仍然不能被充分地证明,仍有很多需要研究的地方。

理论建立

量子物理学是研究微观粒子运动规律的学科,是研究原子、分子以至原子核和基本粒子的结构和性质的基本理论[1]。

量子理论的突破首先出现在黑体辐射能量密度随频率的分布规律上[1]。1900年10月,由于普朗克解释黑体辐射现象,将维恩定律加以改良,又将玻尔兹曼熵公式重新诠释,得出了一个与实验数据完全吻合普朗克公式来描述黑体辐射。

普朗克提出能与观测结果很好地符合的简单公式,实验物理学家相信其中必定蕴藏着一个尚未被揭示出来的科学原理。[2]

普朗克发现,如作如下假定则可从理论上导出其黑体辐射公式:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射它,h称之为普朗克常数。换言之,物体吸收或发射电磁辐射,只能以量子的方式进行,每个量子的能量为E=hν,称为作用量子。

从经典力学来看,能量不连续的概念是绝对不允许的[2]。但是在诠释这个公式时,通过将物体中的原子看作微小的量子谐振子,不得不假设这些量子谐振子的总能量不是连续的,即总能量只能是离散的数值(经典物理学的观点恰好相反)。普朗克进一步假设单独量子谐振子吸收和放射的辐射能是量子化的,这一观点严重地冲击了经典物理学。量子论涉及物质运动形式和运动规律的根本变革。

首先注意到量子假设有可能解决经典物理学所碰到的其他疑难的是爱因斯坦。他试图用量子假设去说明光电效应中碰到的疑难,提出了光量子概念,认为辐射场就是由光量子组成。每一个光量子的能量E与辐射的频率ν的关系是E=hν。采用光量子概念之后,光电效应中出现的疑难随即迎刃而解。

至此普朗克提出的能量不连续的概念,才逐渐引起物理学家的注意[2]。就这样,一位谨慎的物理学家普朗克掀起了20世纪初量子物理学革命的帷幕。

量子力学

量子力学就是在克服早期量子论的困难和局限性中建立起来的。在普朗克—爱因斯坦的光量子论和玻尔的原子论的启发下,法国物理学家L.德布罗意分析了光的微粒说与波动说的发展历史,并注意到几何光学与经典粒子力学的相似性,根据类比方法设想实物(静质量m≠0的)粒子也和光一样,具有波粒二象性,且这两方面必有类似的关系相联系,而普朗克常数必定出现在其中。他假定与一定能量E和动量p的实物粒子相联系的波(称为“物质波”)的频率和波长分别为 ν=E/h,λ=h/p,称为德布罗意关系式。他提出这个假定一方面是企图把作为物质存在的两种形式(光和m≠0的实物粒子)统一起来;另一方面亦是为了更深入地理解微观粒子能量的不连续性,以克服玻尔理论带有人为性质的缺陷。德布罗意把原子定态与驻波联系起来,即把束缚运动实物粒子的能量量子化与有限空间中驻波的波长(或频率)的离散性联系起来[2]。

奥地利物理学家E.薛定谔注意到了德布罗意的工作,1926年初他提出了一个波动方程——薛定谔方程,是含波动函数对空间坐标的二阶微商的偏微分方程。薛定谔把原子的离散能级与微分方程在一定的边界条件下的本征值问题联系起来,成功说明了氢原子、谐振子等的能级和光谱的规律。几乎与此同时,W.海森伯与M.玻恩和E.约当建立了矩阵力学。矩阵力学的提出,与玻尔的量子论有很密切的关系,特别是玻尔的对应原理思想对海森伯有重要影响(见对应原理)。它继承了量子论中合理的内核(如原子的离散能级和定态、量子跃迁、频率条件等概念),同时又摒弃了一些没有实验根据的传统概念(如粒子轨道运动的概念)。海森伯特别强调,任何物理理论中只应出现可观测的物理量(如光谱线的波长、光谱项、量子数、谱线强度等)。矩阵力学中赋予每一个物理量(如粒子的坐标、动量、能量等)以一个矩阵,它们的代数运算规则与经典物理量不同,两个量的乘积一般不满足交换律。不久薛定谔就发现矩阵力学和波动力学是完全等价的。紧接着P.狄拉克和E.约当提出一种称为变换理论的更普遍的形式,指出矩阵力学和波动力学只不过是量子力学规律的无限多种表述形式中的两种[2]。

量子力学是研究原子、分子以至原子核和基本粒子的结构和性质的基本理论,是近代物理的基础理论之一。20世纪前的经典物理学只适于描述一般宏观条件下物质的运动,而对于微观世界(原子和亚原子世界)和一定条件下的某些宏观现象则只有在量子力学的基础上才能说明。另一方面,物质属性及其微观结构只有在量子力学的基础上才能得以解释[2]。所有涉及物质属性和微观结构的问题,无不以量子力学作为理论基础[2]。

黑辐射量子方程

成功地解释黑体辐射是量子化概念诞生以来的第一次牛刀小试。

当物体被加热,以电磁波的形式散发红外线辐射。物体变得炽热时,红色波长部分开始变得可见。大多数热辐射是红外线,除非物体变得像太阳的表面一样热,但当时的实验室内不能够达成这种条件而且只可以量度部分黑体光谱。

能量E、辐射频率f及温度T可以被写成:

h是普朗克常数及k是玻尔兹曼常数。两者都是物理学中的基础。基础能量的量子是hf。可是这个单位正常之下不存在并不需要量子化。

微观粒子的量子论诠释。物质的粒子性由能量E和动量p刻划,波的特征则由频率f 和其波长λ 表达,这两组物理量由普朗克常数h(h=6.626×10-34J·s)联系。

由 E=hv,E=mc2联立两式得:

m=hv/c2(这是光子的相对论质量),而p=mc,则p=hv/c(p 为动量)

德布罗意关系λ=h/p,和量子E=hv,这两个关系式表征波动性与粒子性的统一。物质波是微观粒子,如光子、电子等的波动,具有波粒二象性。

量子通信

量子通信的基本思想主要由Bennett 等于20 世纪80 年代和90 年代起相继提出, 主要包括量子密钥分发(quantum key distribution, QKD) 和量子态隐形传输(quantum teleportation)。 量子密钥分发可以建立安全的通信密码, 通过一次一密的加密方式可以实现点对点方式的安全经典通信. 这里的安全性是在数学上已经获得严格证明的安全性, 这是经典通信迄今为止做不到的. 现有的量子密钥分发技术可以实现百公里量级的量子密钥分发, 辅以光开关等技术, 还可以实现量子密钥分发网络。 量子态隐形传输是基于量子纠缠态的分发与量子联合测量, 实现量子态(量子信息) 的空间转移而又不移动量子态的物理载体, 这如同将密封信件内容从一个信封内转移到另一个信封内而又不移动任何信息载体自身. 这在经典通信中是无法想象的事. 基于量子态隐形传输技术和量子存储技术的量子中继器可以实现任意远距离的量子密钥分发及网络。

量子通信的实现基于量子态传输. 为便于传输, 现有的量子通信实验一般以光子为量子态载体, 其表现形式即为光子态传输. 量子信息的编码空间以光偏振为主。

量子(quantum)是现代物理的重要概念。即一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。

量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”,它最早是由德国物理学家M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍,从而很好地解释了黑体辐射的实验现象。

后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。

自从普朗克提出量子这一概念以来,经爱因斯坦、玻尔、德布罗意、海森伯、薛定谔、狄拉克、玻恩等人的完善,在20世纪的前半期,初步建立了完整的量子力学理论。绝大多数物理学家将量子力学视为理解和描述自然的基本理论。

中文名

量子

外文名

Quantum

适用范围

微观物理世界

别名

能量子

提出者

普朗克

快速

导航

发展历史量子通信

定义

一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。量子英文名称量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”。在物理学中常用到量子的概念,指一个不可分割的基本个体。例如,“光的量子”(光子)是一定频率的光的基本能量单位。而延伸出的量子力学、量子光学等成为不同的专业研究领域。其基本概念为所有的有形性质是“可量子化的”。“量子化”指其物理量的数值是离散的,而不是连续地任意取值。例如,在原子中,电子的能量是可量子化的。这决定了原子的稳定性和发射光谱等一般问题。绝大多数物理学家将量子力学视为了解和描述自然的基本理论。

通俗地说,量子是能表现出某物质或物理量特性的最小单元。

发展历史

提出概念

在经典物理学中,根据能量均分定理:能量是连续变化的,可以取任意值。19世纪后期,科学家们发现很多物理现象无法用经典理论解释。当时德国物理界聚焦于黑体辐射问题的研究。1900年左右,M·普朗克试图解决黑体辐射问题,他大胆提出量子假设,并得出了普朗克辐射定律,沿用至今。普朗克提出:像原子作为一切物质的构成单位一样,“能量子”(量子)是能量的最小单位。物体吸收或发射电磁辐射,只能以能量量子的方式进行。普朗克在1900年12月14日的德国物理学学会会议中第一次发表能量量子化数值、一个分子摩尔(mol)的数值及基本电荷等。其数值比以前更准确,提出的理论也成功解决了黑体辐射的问题,标志着量子力学的诞生。

1905年,德国物理学家爱因斯坦把量子概念引进光的传播过程,提出“光量子”(光子)的概念,并提出光同时具有波动和粒子的性质,即光的“波粒二象性”。

20世纪20年代,法国物理学家德布罗意提出“物质波”概念,即一切物质粒子均具备波粒二象性;德国物理学家海森伯等人建立了量子矩阵力学;奥地利物理学家薛定谔建立了量子波动力学。量子理论的发展进入了量子力学阶段。

1928年,英国物理学家狄拉克完成了矩阵力学和波动力学之间的数学等价证明,对量子力学理论进行了系统的总结,并将两大理论体系——相对论和量子力学成功地结合起来,揭开了量子场论的序幕。量子理论是现代物理学的两大基石之一,从微观层面理解宏观现象提供了理论基础。

量子假设的提出有力地冲击了经典物理学,促进物理学进入微观层面,奠基现代物理学。但直到现在,物理学家关于量子力学的一些假设仍然不能被充分地证明,仍有很多需要研究的地方。

理论建立

量子物理学是研究微观粒子运动规律的学科,是研究原子、分子以至原子核和基本粒子的结构和性质的基本理论[1]。

量子理论的突破首先出现在黑体辐射能量密度随频率的分布规律上[1]。1900年10月,由于普朗克解释黑体辐射现象,将维恩定律加以改良,又将玻尔兹曼熵公式重新诠释,得出了一个与实验数据完全吻合普朗克公式来描述黑体辐射。

普朗克提出能与观测结果很好地符合的简单公式,实验物理学家相信其中必定蕴藏着一个尚未被揭示出来的科学原理。[2]

普朗克发现,如作如下假定则可从理论上导出其黑体辐射公式:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射它,h称之为普朗克常数。换言之,物体吸收或发射电磁辐射,只能以量子的方式进行,每个量子的能量为E=hν,称为作用量子。

从经典力学来看,能量不连续的概念是绝对不允许的[2]。但是在诠释这个公式时,通过将物体中的原子看作微小的量子谐振子,不得不假设这些量子谐振子的总能量不是连续的,即总能量只能是离散的数值(经典物理学的观点恰好相反)。普朗克进一步假设单独量子谐振子吸收和放射的辐射能是量子化的,这一观点严重地冲击了经典物理学。量子论涉及物质运动形式和运动规律的根本变革。

首先注意到量子假设有可能解决经典物理学所碰到的其他疑难的是爱因斯坦。他试图用量子假设去说明光电效应中碰到的疑难,提出了光量子概念,认为辐射场就是由光量子组成。每一个光量子的能量E与辐射的频率ν的关系是E=hν。采用光量子概念之后,光电效应中出现的疑难随即迎刃而解。

至此普朗克提出的能量不连续的概念,才逐渐引起物理学家的注意[2]。就这样,一位谨慎的物理学家普朗克掀起了20世纪初量子物理学革命的帷幕。

量子力学

量子力学就是在克服早期量子论的困难和局限性中建立起来的。在普朗克—爱因斯坦的光量子论和玻尔的原子论的启发下,法国物理学家L.德布罗意分析了光的微粒说与波动说的发展历史,并注意到几何光学与经典粒子力学的相似性,根据类比方法设想实物(静质量m≠0的)粒子也和光一样,具有波粒二象性,且这两方面必有类似的关系相联系,而普朗克常数必定出现在其中。他假定与一定能量E和动量p的实物粒子相联系的波(称为“物质波”)的频率和波长分别为 ν=E/h,λ=h/p,称为德布罗意关系式。他提出这个假定一方面是企图把作为物质存在的两种形式(光和m≠0的实物粒子)统一起来;另一方面亦是为了更深入地理解微观粒子能量的不连续性,以克服玻尔理论带有人为性质的缺陷。德布罗意把原子定态与驻波联系起来,即把束缚运动实物粒子的能量量子化与有限空间中驻波的波长(或频率)的离散性联系起来[2]。

奥地利物理学家E.薛定谔注意到了德布罗意的工作,1926年初他提出了一个波动方程——薛定谔方程,是含波动函数对空间坐标的二阶微商的偏微分方程。薛定谔把原子的离散能级与微分方程在一定的边界条件下的本征值问题联系起来,成功说明了氢原子、谐振子等的能级和光谱的规律。几乎与此同时,W.海森伯与M.玻恩和E.约当建立了矩阵力学。矩阵力学的提出,与玻尔的量子论有很密切的关系,特别是玻尔的对应原理思想对海森伯有重要影响(见对应原理)。它继承了量子论中合理的内核(如原子的离散能级和定态、量子跃迁、频率条件等概念),同时又摒弃了一些没有实验根据的传统概念(如粒子轨道运动的概念)。海森伯特别强调,任何物理理论中只应出现可观测的物理量(如光谱线的波长、光谱项、量子数、谱线强度等)。矩阵力学中赋予每一个物理量(如粒子的坐标、动量、能量等)以一个矩阵,它们的代数运算规则与经典物理量不同,两个量的乘积一般不满足交换律。不久薛定谔就发现矩阵力学和波动力学是完全等价的。紧接着P.狄拉克和E.约当提出一种称为变换理论的更普遍的形式,指出矩阵力学和波动力学只不过是量子力学规律的无限多种表述形式中的两种[2]。

量子力学是研究原子、分子以至原子核和基本粒子的结构和性质的基本理论,是近代物理的基础理论之一。20世纪前的经典物理学只适于描述一般宏观条件下物质的运动,而对于微观世界(原子和亚原子世界)和一定条件下的某些宏观现象则只有在量子力学的基础上才能说明。另一方面,物质属性及其微观结构只有在量子力学的基础上才能得以解释[2]。所有涉及物质属性和微观结构的问题,无不以量子力学作为理论基础[2]。

黑辐射量子方程

成功地解释黑体辐射是量子化概念诞生以来的第一次牛刀小试。

当物体被加热,以电磁波的形式散发红外线辐射。物体变得炽热时,红色波长部分开始变得可见。大多数热辐射是红外线,除非物体变得像太阳的表面一样热,但当时的实验室内不能够达成这种条件而且只可以量度部分黑体光谱。

能量E、辐射频率f及温度T可以被写成:

h是普朗克常数及k是玻尔兹曼常数。两者都是物理学中的基础。基础能量的量子是hf。可是这个单位正常之下不存在并不需要量子化。

微观粒子的量子论诠释。物质的粒子性由能量E和动量p刻划,波的特征则由频率f 和其波长λ 表达,这两组物理量由普朗克常数h(h=6.626×10-34J·s)联系。

由 E=hv,E=mc2联立两式得:

m=hv/c2(这是光子的相对论质量),而p=mc,则p=hv/c(p 为动量)

德布罗意关系λ=h/p,和量子E=hv,这两个关系式表征波动性与粒子性的统一。物质波是微观粒子,如光子、电子等的波动,具有波粒二象性。

量子通信

量子通信的基本思想主要由Bennett 等于20 世纪80 年代和90 年代起相继提出, 主要包括量子密钥分发(quantum key distribution, QKD) 和量子态隐形传输(quantum teleportation)。 量子密钥分发可以建立安全的通信密码, 通过一次一密的加密方式可以实现点对点方式的安全经典通信. 这里的安全性是在数学上已经获得严格证明的安全性, 这是经典通信迄今为止做不到的. 现有的量子密钥分发技术可以实现百公里量级的量子密钥分发, 辅以光开关等技术, 还可以实现量子密钥分发网络。 量子态隐形传输是基于量子纠缠态的分发与量子联合测量, 实现量子态(量子信息) 的空间转移而又不移动量子态的物理载体, 这如同将密封信件内容从一个信封内转移到另一个信封内而又不移动任何信息载体自身. 这在经典通信中是无法想象的事. 基于量子态隐形传输技术和量子存储技术的量子中继器可以实现任意远距离的量子密钥分发及网络。

量子通信的实现基于量子态传输. 为便于传输, 现有的量子通信实验一般以光子为量子态载体, 其表现形式即为光子态传输. 量子信息的编码空间以光偏振为主

量子通信的基本思想主要由Bennett 等于20 世纪80 年代和90 年代起相继提出, 主要包括量子密钥分发(quantum key distribution, QKD) 和量子态隐形传输(quantum teleportation)。 量子密钥分发可以建立安全的通信密码, 通过一次一密的加密方式可以实现点对点方式的安全经典通信. 这里的安全性是在数学上已经获得严格证明的安全性, 这是经典通信迄今为止做不到的. 现有的量子密钥分发技术可以实现百公里量级的量子密钥分发, 辅以光开关等技术, 还可以实现量子密钥分发网络。 量子态隐形传输是基于量子纠缠态的分发与量子联合测量, 实现量子态(量子信息) 的空间转移而又不移动量子态的物理载体, 这如同将密封信件内容从一个信封内转移到另一个信封内而又不移动任何信息载体自身. 这在经典通信中是无法想象的事. 基于量子态隐形传输技术和量子存储技术的量子中继器可以实现任意远距离的量子密钥分发及网络。

量子通信的基本思想主要由Bennett 等于20 世纪80 年代和90 年代起相继提出, 主要包括量子密钥分发(quantum key distribution, QKD) 和量子态隐形传输(quantum teleportation)。 量子密钥分发可以建立安全的通信密码, 通过一次一密的加密方式可以实现点对点方式的安全经典通信. 这里的安全性是在数学上已经获得严格证明的安全性, 这是经典通信迄今为止做不到的. 现有的量子密钥分发技术可以实现百公里量级的量子密钥分发, 辅以光开关等技术, 还可以实现量子密钥分发网络。 量子态隐形传输是基于量子纠缠态的分发与量子联合测量, 实现量子态(量子信息) 的空间转移而又不移动量子态的物理载体, 这如同将密封信件内容从一个信封内转移到另一个信封内而又不移动任何信息载体自身. 这在经典通信中是无法想象的事. 基于量子态隐形传输技术和量子存储技术的量子中继器可以实现任意远距离的量子密钥分发及网络。

量子通信的基本思想主要由Bennett 等于20 世纪80 年代和90 年代起相继提出, 主要包括量子密钥分发(quantum key distribution, QKD) 和量子态隐形传输(quantum teleportation)。 量子密钥分发可以建立安全的通信密码, 通过一次一密的加密方式可以实现点对点方式的安全经典通信. 这里的安全性是在数学上已经获得严格证明的安全性, 这是经典通信迄今为止做不到的. 现有的量子密钥分发技术可以实现百公里量级的量子密钥分发, 辅以光开关等技术, 还可以实现量子密钥分发网络。 量子态隐形传输是基于量子纠缠态的分发与量子联合测量, 实现量子态(量子信息) 的空间转移而又不移动量子态的物理载体, 这如同将密封信件内容从一个信封内转移到另一个信封内而又不移动任何信息载体自身. 这在经典通信中是无法想象的事. 基于量子态隐形传输技术和量子存储技术的量子中继器可以实现任意远距离的量子密钥分发及网络。

量子通信的基本思想主要由Bennett 等于20 世纪80 年代和90 年代起相继提出, 主要包括量子密钥分发(quantum key distribution, QKD) 和量子态隐形传输(quantum teleportation)。 量子密钥分发可以建立安全的通信密码, 通过一次一密的加密方式可以实现点对点方式的安全经典通信. 这里的安全性是在数学上已经获得严格证明的安全性, 这是经典通信迄今为止做不到的. 现有的量子密钥分发技术可以实现百公里量级的量子密钥分发, 辅以光开关等技术, 还可以实现量子密钥分发网络。 量子态隐形传输是基于量子纠缠态的分发与量子联合测量, 实现量子态(量子信息) 的空间转移而又不移动量子态的物理载体, 这如同将密封信件内容从一个信封内转移到另一个信封内而又不移动任何信息载体自身. 这在经典通信中是无法想象的事. 基于量子态隐形传输技术和量子存储技术的量子中继器可以实现任意远距离的量子密钥分发及网络。

上一章 第八十五章番外23 神级无限融合最新章节 下一章 第八十七章番外25