话本小说网 > 轻小说 > 讨论意义
本书标签: 短篇 

36地震(3)

讨论意义

4

观测发现

手段方法

(1)测震:记录一个区域内大小地震的时空分布和特征,从而预报大地震。人们常说的“小震闹,大震到”,就是以震报震的一种特例。当然,需要注意的是“小震闹”并不一定导致“大震到”。

(2)地壳形变观测:许多地震在临震前,震区的地壳形变增大,可以是平时的几倍到几十倍。如测量断层两侧的相对垂直升降或水平位移的参数,是地震预报重要的依据。

地震监测

(3)地磁测量:地球基本磁场可以直接反映地球各种深度乃至地核的物理过程,地磁场及其变化是地球深部物理过程信息的重要来源之一。震磁效益的研究有其理论依据和实验基础,更有震例的事实。

(4)地电观测:地震孕育过程中,会伴随有地下介质(主要是岩石)电阻率的变化及大地电流和自然电场的变化,由于这些变化与岩石受力变形及破裂过程有关,因此提取这一信息可以预测地震。

(5)重力观测:地球重力场是一种比较稳定的地球物理场之一,它与观测点的位置和地球内部介质密度有关。因此,通过重力场变化可以了解到地壳的变形、岩石密度的变化,从而预测地震。

(6)地应力观测:地震孕育不论机制如何,其实质是一个力学过程,是在一定构造背景条件下,地壳体中应力作用的结果。观测地壳应力的变化,可以捕捉地震前兆的信息。

(7)地下水物理和化学的动态观测:地下水动态在震前异常现象,宏观现象如水井水位上涨,水中翻花冒泡、井水变色变味等;微观现象如水化学成分改变(如水中溶解氡气量变化等),固体潮(天体引潮力引起的地下水位涨落现象)的改变等。通过地下水动态的观测,可以直接地了解含水层受周围的影响情况和受力的情况,从而进行地震预报。

类似这样的经常性的监测手段和预报方法还有不少。地震学家们根据多种手段观测的结果,综合考虑环境因素、构造条件和地球动力因素等,提出慎之又慎的分析预测意见。

监测设施

包括地震台内的监测仪器设备、设施;地震台外的观测用山洞、仪器房、观测井(水点)、井房、观测线路、通信设施、供电设施、供水设施、专用堤坝、专用道路、避雷装置及其附属设施;地震遥测台网接受中心的观测设备、中继站、遥测点用房等;地震专用测量标志、测量场地等。中国共有地震监测台站1400个左右,其中专业台站有700个左右。在1400个台站中,约有40%受到周围环境的干扰、观测效果极不理想,还有20%已受到相当大的破坏,必须重新选点和搬迁。

监测环境



3

地震

《地震观测设施和地震观测环境保护条例》第八条第一款规定:“地震观测环境的保护范围,是指地震监测设施周围不能有影响其工作效能的干扰源的最小区域。”并给定“最小距离”的三个附表。《防震减灾法》规定:“地震观测环境应当按照地震监测设施周围不能有影响其工作效能的干扰源的要求划定保护范围,”通常用干扰源距地震监测设施的最小距离划定地震观测环境保护区,对于在条例或规范中没有明确规定距离有关地震监测设施的最小距离的一些干扰源,如铁路、电气化铁路、高压输电线、发电厂、建筑群、无线电发射装置等,则通过县级以上人民政府管理地震工作的部门或者机构会同有关部门通过现场实测确定。

观测数据

数据意义

(1)在地球科学基础理论研究的作用

地球科学是以观测为基础的科学,地球科学的基础理论研究离不开大量地球观测数据信息。如,地球深部构造、地球动力学、地壳现今运动等研究需要大量的地震地磁、重力和地壳形变数据。著名的地球物理学家古登保说:地震是照亮地球内部的明灯。正是现代地震观测,特别是数字地震观测,使地球物理学家揭示了地球内部构造,地球内部介质的变化。大陆漂移和板块学说的形成与地震、地磁观测是密切结合的。留美地球物理学家宋晓东博士和美国地球物理学家合作,通过对大量的连续观测地震数据的研究,发现地球内核与地球外部自转速度不一样的重要现象,被列为二十世纪地球科学的重大发现之一。因此,地球物理和地球化学的基础数据是人类认识地球和地球形成的重要依据,是地球科学创新和发现的基础,中国科学院和各高等院校的地球系统科学基础研究部门对中国地震局对外开放地球物理与地球化学观测数据抱有极大兴趣。

(2)在国民经济建设和国家重大工程项目决策中得到广泛应用

中国正处在大规模经济建设时期,地震科学数据对国民经济建设和国家重大工程项目决策具有非常重要的意义。大型工矿企业、核电站、水库、铁路、高速公路建设均应进行地震和地质灾害安全性评估以及相关研究工作。如中国已经确定的长江三峡工程、南水北调、青藏铁路,西气东送等重大建设项目,以及西部大开发中的各项重要设施建设均需要地震危险区划及各种尺度的地震预测结果和多项地球物理观测数据和活动地质构造数据等作为项目立项决策和实施过程中解决有关问题的科学依据。

数据分类

地震科学数据按照其获取途径可以划分为五大类:

观测数据:包括:地震、地磁、重力、地形变、地电、地下流体、强震动、现今地壳运动等观测数据。这是地震科学数据中数量最大的一类数据。

探测数据:包括:人工地震、大地电磁、地震流动台阵等数据。

调查数据:包括:地震地质、地震灾害、地震现场科考、工程震害、震害预测、地震遥感等数据。

实验数据:包括:构造物理实验、新构造年代测试、建筑物结构抗震实验、岩土地震工程实验等数据。

专题数据:这类数据为综合性数据,主要服务于某一重要研究专题、重大工程项目、某一特定区域综合研究等工作目标而建立的。如:地学大断面探测研究、火山监测研究、水库地震监测研究、矿震监测研究、典型大震震害、中国大陆地壳应力环境数据、三峡工程、青藏铁路、建筑物地震安全性评价等方面的数据。

地动仪

地动仪

公元132年,东汉科学家张衡发明了世界上第一架地震仪器——地动仪,并在实际应用中,得到了验证。遗憾的是,地动仪实物和图样失传,只留下了文字记载,实物逐渐成为了千古之谜。

关于张衡地动仪的记载,见于《续汉书》(司马彪)、《后汉纪》(袁宏)、《后汉书》(范晔)三部史书。这些史料记述了地动仪的外观,内部结构,工作过程,以及验震情况。在随后的漫长岁月里,古今中外,许多人都试图复原地动仪,但是,始终没有成功的复原模型出现,大多数都处于概念模型阶段,或者与史书不符,或者复原的实物模型不能正常工作。

2002年以后,在中国地震局和国家文物局的支持下,成立了“张衡地动仪科学复原”课题组,由中国地震台网中心、清华大学美术学院、国家博物馆、北京机械工业自动化所、河南博物馆等多学科的专家组成。该课题组建立了新的地动仪复原模型,实现了从概念模型到科学模型的跨越。2005年通过了专家鉴定和国家验收。2008年8月完成了定型模型的小型铸造。

上一章 35地震(2) 讨论意义最新章节 下一章 37地震(4)